669 research outputs found

    Resolution of Nearly Mass Degenerate Higgs Bosons and Production of Black Hole Systems of Known Mass at a Muon Collider

    Full text link
    The direct s-channel coupling to Higgs bosons is 40000 times greater for muons than electrons; the coupling goes as mass squared. High precision scanning of the lighter h0h^0 and the higher mass H0H^0 and A0A^0 is thus possible with a muon collider. The H0H^0 and A0A^0 are expected to be nearly mass degenerate and to be CP even and odd, respectively. A muon collider could resolve the mass degeneracy and make CP measurements. The origin of CP violation in the K0K^{0} and B0B^{0} meson systems might lie in the the H0/A0H^0/A^0 Higgs bosons. If large extra dimensions exist, black holes with lifetimes of 1026\sim 10^{-26} seconds could be created and observed via Hawking radiation at the LHC. Unlike proton or electron colliders, muon colliders can produce black hole systems of known mass. This opens the possibilities of measuring quantum remnants, gravitons as missing energy, and scanning production turn on. Proton colliders are hampered by parton distributions and CLIC by beamstrahlung. The ILC lacks the energy reach.Comment: Latex, 5 pages, 2 figures, proceedings to the DPF 2004: Annual Meeting of the Division of Particles and Fields of APS, 26 August-31 August 2004, Riverside, CA, US

    6D Muon Ionization Cooling with an Inverse Cyclotron

    Full text link
    A large admittance sector cyclotron filled with LiH wedges surrounded by helium or hydrogen gas is explored. Muons are cooled as they spiral adiabatically into a central swarm. As momentum approaches zero, the momentum spread also approaches zero. Long bunch trains coalesce. Energy loss is used to inject the muons into the outer rim of the cyclotron. The density of material in the cyclotron decreases adiabatically with radius. The sector cyclotron magnetic fields are transformed into an azimuthally symmetric magnetic bottle in the center. Helium gas is used to inhibit muonium formation by positive muons. Deuterium gas is used to allow captured negative muons to escape via the muon catalyzed fusion process. The presence of ionized gas in the center may automatically neutralize space charge. When a bunch train has coalesced into a central swarm, it is ejected axially with an electric kicker pulse.Comment: Five pages. LaTeX, three postscript figure files. To appear in the AIP Conference Proceedings for COOL05: International Workshop on Beam Cooling, Galena, IL, 18-23 Sept. 200

    Hole Spin Mixing in InAs Quantum Dot Molecules

    Get PDF
    Holes confined in single InAs quantum dots have recently emerged as a promising system for the storage or manipulation of quantum information. These holes are often assumed to have only heavy-hole character and further assumed to have no mixing between orthogonal heavy hole spin projections (in the absence of a transverse magnetic field). The same assumption has been applied to InAs quantum dot molecules formed by two stacked InAs quantum dots that are coupled by coherent tunneling of the hole between the two dots. We present experimental evidence of the existence of a hole spin mixing term obtained with magneto-photoluminescence spectroscopy on such InAs quantum dot molecules. We use a Luttinger spinor model to explain the physical origin of this hole spin mixing term: misalignment of the dots along the stacking direction breaks the angular symmetry and allows mixing through the light-hole component of the spinor. We discuss how this novel spin mixing mechanism may offer new spin manipulation opportunities that are unique to holes.Comment: 13 pages, 9 figure

    Electrically tunable g-factors in quantum dot molecular spin states

    Full text link
    We present a magneto-photoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g-factors of different spin states that have molecular wavefunctions distributed over both quantum dots. We propose a phenomenological model for the change in g-factor based on resonant changes in the amplitude of the wavefunction in the barrier due to the formation of bonding and antibonding orbitals.Comment: 5 pages, 5 figures, Accepted by Phys. Rev. Lett. New version reflects response to referee comment

    Photoluminescence Spectroscopy of the Molecular Biexciton in Vertically Stacked Quantum Dot Pairs

    Full text link
    We present photoluminescence studies of the molecular neutral biexciton-exciton spectra of individual vertically stacked InAs/GaAs quantum dot pairs. We tune either the hole or the electron levels of the two dots into tunneling resonances. The spectra are described well within a few-level, few-particle molecular model. Their properties can be modified broadly by an electric field and by structural design, which makes them highly attractive for controlling nonlinear optical properties.Comment: 4 pages, 5 figures, (v2, revision based on reviewers comments, published

    Non-local nuclear spin quieting in quantum dot molecules: Optically-induced extended two-electron spin coherence time

    Full text link
    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via non-local suppression of nuclear spin fluctuations in both constituent quantum dots (QDs), while optically addressing only the upper QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Lineshape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.Comment: Supplementary materials can be found on the publication page of our website. http://research.physics.lsa.umich.edu/dst/Publications.htm

    Spin Fine Structure in Optically Excited Quantum Dot Molecules

    Full text link
    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin exchange interactions, Pauli exclusion and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals, but spins.Comment: 10 pages, 7 figures, added material, (published
    corecore