2,803 research outputs found
Infrared Properties Of AGB Stars: from Existing Databases to Antarctic Surveys
We present here a study of the Infrared properties of Asymptotic Giant Branch
stars (hereafter AGB) based on existing databases, mainly from space-borne
experiments. Preliminary results about C and S stars are discussed, focusing on
the topics for which future Infrared surveys from Antarctica will be crucial.
This kind of surveys will help in making more quantitative our knowledge of the
last evolutionary stages of low mass stars, especially for what concerns
luminosities and mass loss.Comment: 6 pages, 3 figures. Contribution from the 1st ARENA Conference on
"Large Astronomical Infrastructures at CONCORDIA, prospects and constraints
for Antarctic Optical/IR Astronomy" held 16-19 October 2006 at Roscoff,
Franc
s-Processing in the Galactic Disk. I. Super-Solar Abundances of Y, Zr, La, Ce in Young Open Clusters
In a recent study, based on homogeneous barium abundance measurements in open
clusters, a trend of increasing [Ba/Fe] ratios for decreasing cluster age was
reported. We present here further abundance determinations, relative to four
other elements hav- ing important s-process contributions, with the aim of
investigating whether the growth found for [Ba/Fe] is or not indicative of a
general property, shared also by the other heavy elements formed by slow
neutron captures. In particular, we derived abundances for yttrium, zirconium,
lanthanum and cerium, using equivalent widths measurements and the MOOG code.
Our sample includes 19 open clusters of different ages, for which the spectra
were obtained at the ESO VLT telescope, using the UVES spectrometer. The growth
previously suggested for Ba is confirmed for all the elements analyzed in our
study. This fact implies significant changes in our views of the Galactic
chemical evolution for elements beyond iron. Our results necessarily require
that very low-mass AGB stars (M < 1.5M\odot) produce larger amounts of
s-process elements (hence acti- vate the 13 C-neutron source more effectively)
than previously expected. Their role in producing neutron-rich elements in the
Galactic disk has been so far underestimated and their evolution and
neutron-capture nucleosynthesis should now be reconsidered.Comment: ApJ accepte
MHD and deep mixing in evolved stars. 1. 2D and 3D analytical models for the AGB
The advection of thermonuclear ashes by magnetized domains emerging from near
the H-shell was suggested to explain AGB star abundances. Here we verify this
idea quantitatively through exact MHD models. Starting with a simple 2D
geometry and in an inertia frame, we study plasma equilibria avoiding the
complications of numerical simulations. We show that, below the convective
envelope of an AGB star, variable magnetic fields induce a natural expansion,
permitted by the almost ideal MHD conditions, in which the radial velocity
grows as the second power of the radius. We then study the convective envelope,
where the complexity of macro-turbulence allows only for a schematic analytical
treatment. Here the radial velocity depends on the square root of the radius.
We then verify the robustness of our results with 3D calculations for the
velocity, showing that, for both the studied regions, the solution previously
found can be seen as a planar section of a more complex behavior, in which
anyway the average radial velocity retains the same dependency on radius found
in 2D. As a final check, we compare our results to approximate descriptions of
buoyant magnetic structures. For realistic boundary conditions the envelope
crossing times are sufficient to disperse in the huge convective zone any
material transported, suggesting magnetic advection as a promising mechanism
for deep mixing. The mixing velocities are smaller than for convection, but
larger than for diffusion and adequate to extra-mixing in red giants
Nucleosynthesis in asymptotic giant branch stars: Relevance for galactic enrichment and solar system formation
We present a review of nucleosynthesis in AGB stars outlining the development of theoretical models and their relationship to observations. We focus on the new high resolution codes with improved opacities, which recently succeeded in accounting for the third dredge-up. This opens the possibility of understanding low luminosity C stars (enriched in s-elements) as the normal outcome of AGB evolution, characterized by production of 12C and neutron-rich nuclei in the He intershell and by mass loss from strong stellar winds. Neutron captures in AGB stars are driven by two reactions: 13C(α,n)16O, which provides the bulk of the neutron flux at low neutron densities (Nn ≤ 107 n/cm3), and 22Ne(α,n)25Mg, which is mildly activated at higher temperatures and mainly affects the production of s-nuclei depending on reaction branchings. The first reaction is now known to occur in the radiative interpulse phase, immediately below the region previously homogenized by third dredge-up. The second reaction occurs during the convective thermal pulses. The resulting nucleosynthesis phenomena are rather complex and rule out any analytical approximation (exponential distribution of neutron fluences). Nucleosynthesis in AGB stars, modeled at different metallicities, account for several observational constraints, coming from a wide spectrum of sources: evolved red giants rich in s-elements, unevolved stars at different metallicities, presolar grains recovered from meteorites, and the abundances of s-process isotopes in the solar system. In particular, a good reproduction of the solar system main component is obtained as a result of Galactic chemical evolution that mixes the outputs of AGB stars of different stellar generations, born with different metallicities and producing different patterns of s-process nuclei. The main solar s-process pattern is thus not considered to be the result of a standard archetypal s-process occurring in all stars. Concerning the 13C neutron source, its synthesis requires penetration of small amounts of protons below the convective envelope, where they are captured by the abundant 12C forming a 13C-rich pocket. This penetration cannot be modeled in current evolutionary codes, but is treated as a free parameter. Future hydrodynamical studies of time dependent mixing will be required to attack this problem. Evidence of other insufficiencies in the current mixing algorithms is common throughout the evolution of low and intermediate mass stars, as is shown by the inadequacy of stellar models in reproducing the observations of CNO isotopes in red giants and in circumstellar dust grains. These observations require some circulation of matter between the bottom of convective envelopes and regions close to the H-burning shell (cool bottom processing). AGB stars are also discussed in the light of their possible contribution to the inventory of short-lived radioactivities that were found to be alive in the early solar system. We show that the pollution of the protosolar nebula by a close-by AGB star may account for concordant abundances of 26Al, 41Ca, 60Fe, and 107Pd. The AGB star must have undergone a very small neutron exposure, and be of small initial mass (M <= 1.5 [sols]). There is a shortage of 26Al in such models, that however remains within the large uncertainties of crucial reaction rates. The net 26Al production problem requires further investigation
The peculiar horizontal branch morphology of the Galactic globular clusters NGC 6388 and NGC 6441: new insights from UV observations
Context. In this paper we present multiband optical and UV Hubble Space Telescope photometry of the two Galactic globular clusters NGC 6388 and NGC 6441.
Aims. We investigate the properties of their anomalous horizontal branches in different photometric planes in order to shed light on the nature of the physical mechanism(s) responsible for the existence of an extended blue tail and of a slope in the horizontal branch, visible in all the color-magnitude diagrams.
Methods. New photometric data have been collected and carefully reduced. Empirical data have been compared with updated stellar models of low-mass, metal-rich, He-burning structures, transformed to the observational plane with appropriate model atmospheres.
Results. We have obtained the first UV color-magnitude diagrams for NGC 6388 and NGC 6441. These diagrams confirm previous results, obtained in optical bands, about the presence of a sizeable stellar population of extremely hot horizontal branch stars. At least in NGC 6388, we find a clear indication that at the hot end of the horizontal branch the distribution of stars forms a hook-like feature, closely resembling those observed in NGC 2808 and Omega Cen. We briefly review the theoretical scenarios that have been suggested for interpreting this observational feature. We also investigate the tilted horizontal branch morphology and provide further evidence that supports early suggestions that this feature cannot be interpreted as an effect of differential reddening. We show that a possible solution of the puzzle is to assume that a small fraction - ranging between 10-20% - of the stellar population in the two clusters is strongly helium-enriched (Y ~ 0.40 in NGC 6388 and Y ~ 0.35 in NGC 6441). The occurrence of a spread in the He abundance between the canonical value (Y ~ 0.26) and the quoted upper limits can significantly help in explaining the "whole" morphology of the horizontal branch and the pulsational properties of the variable stars in the target clusters
The effects of a revised Be e-capture rate on solar neutrino fluxes
The electron-capture rate on Be is the main production channel for Li
in several astrophysical environments. Theoretical evaluations have to account
for not only the nuclear interaction, but also the processes in the plasma
where Be ions and electrons interact. In the past decades several estimates
were presented, pointing out that the theoretical uncertainty in the rate is in
general of few percents. In the framework of fundamental solar physics, we
consider here a recent evaluation for the Be+e rate, not used up to now
in the estimate of neutrino fluxes. We analysed the effects of the new
assumptions on Standard Solar Models (SSMs) and compared the results obtained
by adopting the revised Be+e rate to those obtained by the one reported
in a widely used compilation of reaction rates (ADE11). We found that new SSMs
yield a maximum difference in the efficiency of the Be channel of about
-4\% with respect to what is obtained with the previously adopted rate. This
fact affects the production of neutrinos from B, increasing the relative
flux up to a maximum of 2.7\%. Negligible variations are found for the physical
and chemical properties of the computed solar models. The agreement with the
SNO measurements of the neutral current component of the B neutrino flux is
improved.Comment: 7 pages, 3 figures, 4 tables. Accepted for the publication on A&
- …
