607 research outputs found
X-ray frequency combs from optically controlled resonance fluorescence
An x-ray pulse-shaping scheme is put forward for imprinting an optical
frequency comb onto the radiation emitted on a driven x-ray transition, thus
producing an x-ray frequency comb. A four-level system is used to describe the
level structure of N ions driven by narrow-bandwidth x rays, an optical
auxiliary laser, and an optical frequency comb. By including many-particle
enhancement of the emitted resonance fluorescence, a spectrum is predicted
consisting of equally spaced narrow lines which are centered on an x-ray
transition energy and separated by the same tooth spacing as the driving
optical frequency comb. Given a known x-ray reference frequency, our comb could
be employed to determine an unknown x-ray frequency. While relying on the
quality of the light fields used to drive the ensemble of ions, the model has
validity at energies from the 100 eV to the keV range.Comment: 11 pages, 2 figure
Broadband high-resolution x-ray frequency combs
Optical frequency combs have had a remarkable impact on precision
spectroscopy. Enabling this technology in the x-ray domain is expected to
result in wide-ranging applications, such as stringent tests of astrophysical
models and quantum electrodynamics, a more sensitive search for the variability
of fundamental constants, and precision studies of nuclear structure.
Ultraprecise x-ray atomic clocks may also be envisaged. In this work, an x-ray
pulse-shaping method is put forward to generate a comb in the absorption
spectrum of an ultrashort high-frequency pulse. The method employs an
optical-frequency-comb laser, manipulating the system's dipole response to
imprint a comb on an excited transition with a high photon energy. The
described scheme provides higher comb frequencies and requires lower
optical-comb peak intensities than currently explored methods, preserves the
overall width of the optical comb, and may be implemented by presently
available x-ray technology
Non-Hermitian Rayleigh-Schroedinger Perturbation Theory
We devise a non-Hermitian Rayleigh-Schroedinger perturbation theory for the
single- and the multireference case to tackle both the many-body problem and
the decay problem encountered, for example, in the study of electronic
resonances in molecules. A complex absorbing potential (CAP) is employed to
facilitate a treatment of resonance states that is similar to the
well-established bound-state techniques. For the perturbative approach, the
full CAP-Schroedinger Hamiltonian, in suitable representation, is partitioned
according to the Epstein-Nesbet scheme. The equations we derive in the
framework of the single-reference perturbation theory turn out to be identical
to those obtained by a time-dependent treatment in Wigner-Weisskopf theory. The
multireference perturbation theory is studied for a model problem and is shown
to be an efficient and accurate method. Algorithmic aspects of the integration
of the perturbation theories into existing ab initio programs are discussed,
and the simplicity of their implementation is elucidated.Comment: 10 pages, 1 figure, RevTeX4, submitted to Physical Review
Hydrogen bonding in infinite hydrogen fluoride and hydrogen chloride chains
Hydrogen bonding in infinite HF and HCl bent (zigzag) chains is studied using
the ab initio coupled-cluster singles and doubles (CCSD) correlation method.
The correlation contribution to the binding energy is decomposed in terms of
nonadditive many-body interactions between the monomers in the chains, the
so-called energy increments. Van der Waals constants for the two-body
dispersion interaction between distant monomers in the infinite chains are
extracted from this decomposition. They allow a partitioning of the correlation
contribution to the binding energy into short- and long-range terms. This
finding affords a significant reduction in the computational effort of ab
initio calculations for solids as only the short-range part requires a
sophisticated treatment whereas the long-range part can be summed immediately
to infinite distances.Comment: 9 pages, 4 figures, 3 tables, RevTeX4, corrected typo
Theory of x-ray absorption by laser-dressed atoms
An ab initio theory is devised for the x-ray photoabsorption cross section of
atoms in the field of a moderately intense optical laser (800nm, 10^13 W/cm^2).
The laser dresses the core-excited atomic states, which introduces a dependence
of the cross section on the angle between the polarization vectors of the two
linearly polarized radiation sources. We use the Hartree-Fock-Slater
approximation to describe the atomic many-particle problem in conjunction with
a nonrelativistic quantum-electrodynamic approach to treat the photon-electron
interaction. The continuum wave functions of ejected electrons are treated with
a complex absorbing potential that is derived from smooth exterior complex
scaling. The solution to the two-color (x-ray plus laser) problem is discussed
in terms of a direct diagonalization of the complex symmetric matrix
representation of the Hamiltonian. Alternative treatments with time-independent
and time-dependent non-Hermitian perturbation theories are presented that
exploit the weak interaction strength between x rays and atoms. We apply the
theory to study the photoabsorption cross section of krypton atoms near the K
edge. A pronounced modification of the cross section is found in the presence
of the optical laser.Comment: 13 pages, 3 figures, 1 table, RevTeX4, corrected typoe
Theory of x-ray absorption by laser-aligned symmetric-top molecules
We devise a theory of x-ray absorption by symmetric-top molecules which are
aligned by an intense optical laser. Initially, the density matrix of the
system is composed of the electronic ground state of the molecules and a
thermal ensemble of rigid-rotor eigenstates. We formulate equations of motion
of the two-color (laser plus x rays) rotational-electronic problem. The
interaction with the laser is assumed to be nonresonant; it is described by an
electric dipole polarizability tensor. X-ray absorption is approximated as a
one-photon process. It is shown that the equations can be separated such that
the interaction with the laser can be treated independently of the x rays. The
laser-only density matrix is propagated numerically. After each time step, the
x-ray absorption is calculated. We apply our theory to study adiabatic
alignment of bromine molecules (Br2). The required dynamic polarizabilities are
determined using the ab initio linear response methods coupled-cluster singles
(CCS), second-order approximate coupled-cluster singles and doubles (CC2), and
coupled-cluster singles and doubles (CCSD). For the description of x-ray
absorption on the sigma_g 1s --> sigma_u 4p resonance, a parameter-free
two-level model is used for the electronic structure of the molecules. Our
theory opens up novel perspectives for the quantum control of x-ray radiation.Comment: 14 pages, 4 figures, 1 table, RevTeX4, revise
SMM behaviour and magnetocaloric effect in heterometallic 3d-4f coordination clusters with high azide : metal ratios
We present the synthesis and characterization of heterometallic compounds with a very large azide to metal ratio and fascinating magnetic properties
- …
