910 research outputs found

    Load proportional safety brake

    Get PDF
    This brake is a self-energizing mechanical friction brake and is intended for use in a rotary drive system. It incorporates a torque sensor which cuts power to the power unit on any overload condition. The brake is capable of driving against an opposing load or driving, paying-out, an aiding load in either direction of rotation. The brake also acts as a no-back device when torque is applied to the output shaft. The advantages of using this type of device are: (1) low frictional drag when driving; (2) smooth paying-out of an aiding load with no runaway danger; (3) energy absorption proportional to load; (4) no-back activates within a few degrees of output shaft rotation and resets automatically; and (5) built-in overload protection

    Investigating the relationship between social support and durable return to work

    Get PDF
    The aim of the current study was to investigate the relationship between social support and durable return to work (RTW) post occupational injury. A total of 1,179 questionnaires were posted to clients previously receiving vocational rehabilitation services from the Return to Work Assist program in Queensland, Australia. Participants were asked to indicate their current RTW status, in addition to completing questionnaires measuring their relationship with their superior, relationships with colleagues, and social support external to the workplace. The statistical analysis included 110 participants. An ANOVA indicated that participants in the RTW group reported significantly better relationships with their superiors and colleagues than participants in the non-durable RTW group. No significant differences were observed between the RTW, non-durable RTW and no RTW groups on a measure of social support external to the workplace. Although the findings were limited by the low response rate, an evaluation of demographics indicated the respondents were representative of the original target sample. The findings suggested that providing support in the workplace is an important area for intervention and may be a means of increasing durable RTW outcomes.</jats:p

    Wake center position tracking using downstream wind turbine hub loads

    Get PDF
    Having an improved awareness of the flow within a wind farm is useful for power harvesting maximization, load minimization and design of wind farm layout. Local flow information at each wind turbine location can be obtained by using the response of the wind turbines, which are consequently used as distributed sensors. This paper proposes the use of hub loads to track the position of wakes within a wind farm. Simulation experiments conducted within a high-fidelity aeroservoelastic environment demonstrate the performance of the new method

    Simultaneous observation of wind shears and misalignments from rotor loads

    Get PDF
    A wind turbine is used in this paper as a sensor to measure the wind conditions at the rotor disk. In fact, as any anisotropy in the wind will lead to a specific signature in the machine response, by inverting a response model one may infer its generating cause, i.e. the wind. Control laws that exploit this knowledge can be used to enhance the performance of a wind turbine or a wind power plant. This idea is used in the present paper to formulate a linear implicit model that relates wind states and rotor loads. Simulations are run in both uniform and turbulent winds, using a high-fidelity aeroservoleastic wind turbine model. Results demonstrate the ability of the proposed observer in detecting the horizontal and vertical wind misalignments, as well as the vertical and horizontal shears

    Benefit-risk profile of cytoreductive drugs along with antiplatelet and antithrombotic therapy after transient ischemic attack or ischemic stroke in myeloproliferative neoplasms

    Get PDF
    We analyzed 597 patients with myeloproliferative neoplasms (MPN) who presented transient ischemic attacks (TIA, n = 270) or ischemic stroke (IS, n = 327). Treatment included aspirin, oral anticoagulants, and cytoreductive drugs. The composite incidence of recurrent TIA and IS, acute myocardial infarction (AMI), and cardiovascular (CV) death was 4.21 and 19.2%, respectively at one and five years after the index event, an estimate unexpectedly lower than reported in the general population. Patients tended to replicate the first clinical manifestation (hazard ratio, HR: 2.41 and 4.41 for recurrent TIA and IS, respectively); additional factors for recurrent TIA were previous TIA (HR: 3.40) and microvascular disturbances (HR: 2.30); for recurrent IS arterial hypertension (HR: 4.24) and IS occurrence after MPN diagnosis (HR: 4.47). CV mortality was predicted by age over 60 years (HR: 3.98), an index IS (HR: 3.61), and the occurrence of index events after MPN diagnosis (HR: 2.62). Cytoreductive therapy was a strong protective factor (HR: 0.24). The rate of major bleeding was similar to the general population (0.90 per 100 patient-years). In conclusion, the long-term clinical outcome after TIA and IS in MPN appears even more favorable than in the general population, suggesting an advantageous benefit-risk profile of antithrombotic and cytoreductive treatment

    Improving Clinical Governance of Kidney Transplantation: Review of a Ruling and of the Clinical Governance Process in the United Kingdom

    Get PDF
    The presentation of adverse events and negative outcomes is uncommon in scientific publications, particularly in a highly regulated and scrutinized practice such as solid organ transplantation. A ruling of a regulatory body of the pharmaceutical industry in the United Kingdom generates several considerations, in particular, regarding the governance process of kidney transplantation, as the events reported in the ruling are linked with high rejection rates and negative patient outcomes. This analysis offered a review of the current governance processes, while recognizing the relevant limitations of the system regulating kidney transplantation outcomes in the United Kingdom. The article identified some of the potential interventions that may contribute to delivering an improved governance, harmonizing contemporary practice, modern health care system, and establishing scientific knowledge

    Molecular Variability of the <i>Fusarium solani</i> Species Complex Associated with Fusarium Wilt of Melon in Iran

    Get PDF
    Species of the Fusarium solani species complex (FSSC) are responsible for the Fusarium wilt disease of melon (Cucumis melo), a major disease of this crop in Iran. According to a recent taxonomic revision of Fusarium based primarily on multilocus phylogenetic analysis, Neocosmospora, a genus distinct from Fusarium sensu stricto, has been proposed to accommodate the FSSC. This study characterized 25 representative FSSC isolates from melon collected in 2009–2011 during a field survey carried out in five provinces of Iran. Pathogenicity assays showed the isolates were pathogenic on different varieties of melon and other cucurbits, including cucumber, watermelon, zucchini, pumpkin, and bottle gourd. Based on morphological characteristics and phylogenetic analysis of three genetic regions, including nrDNA internal transcribed spacer (ITS), 28S nrDNA large subunit (LSU) and translation elongation factor 1-alpha (tef1), Neocosmospora falciformis (syn. F. falciforme), N. keratoplastica (syn. F. keratoplasticum), N. pisi (syn. F. vanettenii), and Neocosmospora sp. were identified among the Iranian FSSC isolates. The N. falciformis isolates were the most numerous. This is the first report of N. pisi causing wilt and root rot disease in melon. Iranian FSSC isolates from different regions in the country shared the same multilocus haplotypes suggesting a long-distance dispersal of FSSC, probably through seeds

    Specific loss power in superparamagnetic hyperthermia: nanofluid versus composite

    Get PDF
    Currently, the magnetic hyperthermia induced by nanoparticles is of great interest in biomedical applications. In the literature, we can find a lot of models for magnetic hyperthermia, but many of them do not give importance to a significant detail, such as the geometry of nanoparticle positions in the system. Usually, a nanofluid is treated by considering random positions of the nanoparticles, geometry that is actually characteristic to the composite nanoparticles. To assess the error which is frequently made, in this paper we propose a comparative analysis between the specific loss power (SLP) in case of a nanofluid and the SLP in case of a composite with magnetic nanoparticles. We are going to use a superparamagnetic hyperthermia model based on the improved model for calculating the Neel relaxation time in a magnetic field oblique to the nanoparticle magnetic anisotropy axes, and on the improved theoretical model LRT (linear response theory) for SLP. To generate the nanoparticle geometry in the system, we are going to apply a Monte Carlo method to a nanofluid, by minimising the interaction potentials in liquid medium and, for a composite environment, a method for generating random positions of the nanoparticles in a given volume
    corecore