1,267 research outputs found

    The BFKL Equation at Next-to-Leading Order and Beyond

    Get PDF
    On the basis of a renormalization group analysis of the kernel and of the solutions of the BFKL equation with subleading corrections, we propose and calculate a novel expansion of a properly defined effective eigenvalue function. We argue that in this formulation the collinear properties of the kernel are taken into account to all orders, and that the ensuing next-to-leading truncation provides a much more stable estimate of hard Pomeron and of resummed anomalous dimensions.Comment: LaTex, 12 pages, 1 eps figur

    Tunneling transition to the Pomeron regime

    Get PDF
    We point out that, in some models of small-x hard processes, the transition to the Pomeron regime occurs through a sudden tunneling effect, rather than a slow diffusion process. We explain the basis for such a feature and we illustrate it for the BFKL equation with running coupling by gluon rapidity versus scale correlation plots.Comment: 17 pages, 5 figures, mpeg animations available from http://www.lpthe.jussieu.fr/~salam/tunneling/ . v2 includes additional reference

    k-Factorization and Small-x Anomalous Dimensions

    Full text link
    We investigate the consistency requirements of the next-to leading BFKL equation with the renormalization group, with particular emphasis on running coupling effects and NL anomalous dimensions. We show that, despite some model dependence of the bare hard Pomeron, such consistency holds at leading twist level, provided the effective variable αs(t)log(1/x)\alpha_s(t) log(1/x) is not too large. We give a unified view of resummation formulas for coefficient functions and anomalous dimensions in the Q_0-scheme and we discuss in detail the new one for the qqˉq\bar{q} contributions to the gluon channel.Comment: Latex2e, 44 pages including 7 PostScript figure

    Heavy quark production as sensitive test for an improved description of high energy hadron collisions

    Full text link
    QCD dynamics at small quark and gluon momentum fractions or large total energy, which plays a major role for HERA, the Tevatron, RHIC and LHC physics, is still poorly understood. For one of the simplest processes, namely bottom-antibottom production, next-to-leading-order perturbation theory fails. We show that the combination of two recently developed theoretical concepts, the k_perp-factorization and the next-to-leading-logarithmic-approximation BFKL vertex, gives perfect agreement with data. One can therefore hope that these concepts provide a valuable foundation for the description of other high energy processes.Comment: RevTeX, 4 pages, 7 figures titel and abstract changed, several formulations modified in the text, 1 figure droppe

    Expanding running coupling effects in the hard Pomeron

    Get PDF
    We study QCD hard processes at scales of order k^2 > Lambda^2 in the limit in which the beta-function coefficient - b is taken to be small, but alphas(k) is kept fixed. The (nonperturbative) Pomeron is exponentially suppressed in this limit, making it possible to define purely perturbative high-energy Green's functions. The hard Pomeron exponent acquires diffusion and running coupling corrections which can be expanded in the b parameter and turn out to be dependent on the effective coupling b alphas^2 Y. We provide a general setup for this b-expansion and we calculate the first few terms both analytically and numerically.Comment: 36 pages, 15 figures, additional references adde

    The Gluon Impact Factors

    Get PDF
    We calculate in the next-to-leading approximation the non-forward gluon impact factors for arbitrary color state in the tt-channel. In the case of the octet state we check the so-called "second bootstrap condition" for the gluon Reggeization in QCD, using the integral representation for the impact factors. The condition is fulfilled in the general case of an arbitrary space-time dimension and massive quark flavors for both helicity conserving and non-conserving parts.Comment: 32 pages, LaTeX, 1 EPS figure, uses epsf.sty and axodraw.st

    The Quark Impact Factors

    Full text link
    We calculate in the next-to-leading approximation the non-forward quark impact factors for both singlet and octet color representation in the tt-channel. The integral representation of the octet impact factor in the general case of arbitrary space-time dimension and massive quark flavors is used to check the so-called "second bootstrap condition" for the gluon Reggeization at the next-to-leading logarithmic approximation in perturbative QCD. We find that it is satisfied for both helicity conserving and non-conserving parts. The integrations are then performed for the explicit calculation of the impact factors in the massless quark case.Comment: 23 pages, LaTeX, 1 EPS figure, uses epsf.sty and axodraw.st

    Target Fragmentation in Semi-Inclusive DIS: Fracture Functions, Cut Vertices and the OPE

    Get PDF
    We discuss semi-inclusive Deep Inelastic Scattering (DIS) in the z -> 1 limit, in particular the relationship between fracture functions, generalised cut vertices and Green functions of the composite operators arising in the OPE. The implications, in the spin-polarised case, for testing whether the "proton spin" effect is target-independent are explored. Explicit calculations in (phi^3)_6 theory are presented which are consistent with our observations.Comment: 22 pages, 25 figures, LaTeX 2e; uses graphics packag

    Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass

    Full text link
    The inclusive Higgs production cross section from gluon fusion is calculated through NNLO QCD, including its top quark mass dependence. This is achieved through a matching of the 1/mtop expansion of the partonic cross sections to the exact large s-hat limits which are derived from k_T-factorization. The accuracy of this procedure is estimated to be better than 1% for the hadronic cross section. The final result is shown to be within 1% of the commonly used effective theory approach, thus confirming earlier findings.Comment: 28 pages, 14 figure

    Photon-Reggeon Interaction Vertices in the Nla

    Get PDF
    We calculate the effective vertices for the quark-antiquark and the quark-antiquark-gluon production in the virtual photon - Reggeized gluon interaction. The last vertex is considered at the Born level; for the first one the one-loop corrections are obtained. These vertices have a number of applications; in particular, they are necessary for calculation of the virtual photon impact factor in the next-to-leading logarithmic approximation.Comment: 20 pages, references adde
    corecore