323 research outputs found

    Diagnostic accuracy of the primary care screener for affective disorder (PC-SAD) in primary care

    Get PDF
    Background: Depression goes often unrecognised and untreated in non-psychiatric medical settings. Screening has recently gained acceptance as a first step towards improving depression recognition and management. The Primary Care Screener for Affective Disorders (PC-SAD) is a self-administered questionnaire to screen for Major Depressive Disorder (MDD) and Dysthymic Disorder (Dys) which has a sophisticated scoring algorithm that confers several advantages. This study tested its performance against a ‘gold standard’ diagnostic interview in primary care. Methods: A total of 416 adults attending 13 urban general internal medicine primary care practices completed the PC-SAD. Of 409 who returned a valid PC-SAD, all those scoring positive (N=151) and a random sample (N=106) of those scoring negative were selected for a 3-month telephone follow-up assessment including the administration of the Structured Clinical Interview for DSM-IV-TR Axis I Disorders (SCID-I) by a psychiatrist who was masked to PC-SAD results. Results: Most selected patients (N=212) took part in the follow-up assessment. After adjustment for partial verification bias the sensitivity, specificity, positive and negative predictive value for MDD were 90%, 83%, 51%, and 98%. For Dys, the corresponding figures were 78%, 79%, 8%, and 88%. Conclusions: While some study limitations suggest caution in interpreting our results, this study corroborated the diagnostic validity of the PC-SAD, although the low PPV may limit its usefulness with regard to Dys. Given its good psychometric properties and the short average administration time, the PC-SAD might be the screening instrument of choice in settings where the technology for computer automated scoring is available

    Canopy Structure and Forage Production of Lolium rididum Gaudin as influenced by the Frequency of Defoliation

    Get PDF
    An experiment was conducted in Sardinia to develop an appropriate rotational grazing management regime in spring for an ecotype of annual ryegrass (Lolium rigidum Gaudin). Three intermittent defoliation treatments were compared using sward surface height (10, 15 or 20 cm) to determine time of cutting. Forage dry matter yield, tiller population density, LAI, vertical distribution of plant tissues and other related characteristics were measured. Cutting when sward reached 10 cm resulted In significantly lower yields but a better canopy structure (denser sward, higher percentage of leaves in the bottom layers, higher leaf: sheath ratio) than the other treatments. The results suggest & that the frequently defoliated swards could.be utilized by sheep more efficiently than the others because the bottom layer of the tall swards consisted only of stem and sheath material. This effect could compensate for the lower 101al forage yield of the intensively defoliated sward

    Could CMR Tissue-Tracking and Parametric Mapping Distinguish Between Takotsubo Syndrome and Acute Myocarditis? A Pilot Study

    Get PDF
    Rationale and Objective: Takotsubo syndrome (TS) is a transient and often misdiagnosed form of left ventricular dysfunction. Acute myocarditis (AM) is usually included in TS differential diagnosis. The aim of this study is to assess the role of cardiac magnetic resonance imaging coupled with tissue-tracking technique (CMR-TT) and parametric mappings analysis in discriminating between TS and AM. Materials and Methods: We retrospectively enrolled three groups: patients with TS (n = 12), patients with AM (n = 14), and 10 healthy controls. All the patients had a comprehensive CMR examination, including the assessment of global and segmental longitudinal strain, circumferential strain, radial strain (RS), and parametric mapping. Results: The analysis of variance was used to compare the different groups. In TS patients, basal RS, global T1 mapping, global T2 mapping, mid T2 mapping, apical T1 and T2 mapping were statistically significantly different compared with the other groups. MANCOVA analysis confirmed that the association between myocardial strain data and parametric mapping was independent on age and sex. Apical T1 and T2 mapping proved to have a good performance in differentiating TS from AM (area under the curves of 0.908 and 0.879, respectively). Conclusion: Basal RS and apical tissue mapping analysis are the most advanced CMR-derived parameters in making a differential diagnosis between TS and AM

    A token-mixer architecture for CAD-RADS classification of coronary stenosis on multiplanar reconstruction CT images

    Get PDF
    Background and objective: In patients with suspected Coronary Artery Disease (CAD), the severity of stenosis needs to be assessed for precise clinical management. An automatic deep learning-based algorithm to classify coronary stenosis lesions according to the Coronary Artery Disease Reporting and Data System (CAD-RADS) in multiplanar reconstruction images acquired with Coronary Computed Tomography Angiography (CCTA) is proposed. Methods: In this retrospective study, 288 patients with suspected CAD who underwent CCTA scans were included. To model long-range semantic information, which is needed to identify and classify stenosis with challenging appearance, we adopted a token-mixer architecture (ConvMixer), which can learn structural relationship over the whole coronary artery. ConvMixer consists of a patch embedding layer followed by repeated convolutional blocks to enable the algorithm to learn long-range dependences between pixels. To visually assess ConvMixer performance, Gradient-Weighted Class Activation Mapping (Grad-CAM) analysis was used. Results: Experimental results using 5-fold cross-validation showed that our ConvMixer can classify significant coronary artery stenosis (i.e., stenosis with luminal narrowing ≥50%) with accuracy and sensitivity of 87% and 90%, respectively. For CAD-RADS 0 vs. 1–2 vs. 3–4 vs. 5 classification, ConvMixer achieved accuracy and sensitivity of 72% and 75%, respectively. Additional experiments showed that ConvMixer achieved a better trade-off between performance and complexity compared to pyramid-shaped convolutional neural networks. Conclusions: Our algorithm might provide clinicians with decision support, potentially reducing the interobserver variability for coronary artery stenosis evaluation

    Portable NIR Spectroscopy to Simultaneously Trace Honey Botanical and Geographical Origins and Detect Syrup Adulteration

    Get PDF
    Fraudulent practices concerning honey are growing fast and involve misrepresentation of origin and adulteration. Simple and feasible methods for honey authentication are needed to ascertain honey compliance and quality. Working on a robust dataset and simultaneously investigating honey traceability and adulterant detection, this study proposed a portable FTNIR fingerprinting approach combined with chemometrics. Multifloral and unifloral honey samples (n = 244) from Spain and Sardinia (Italy) were discriminated by botanical and geographical origin. Qualitative and quantitative methods were developed using linear discriminant analysis (LDA) and partial least squares (PLS) regression to detect adulterated honey with two syrups, consisting of glucose, fructose, and maltose. Botanical and geographical origins were predicted with 90% and 95% accuracy, respectively. LDA models discriminated pure and adulterated honey samples with an accuracy of over 92%, whereas PLS allows for the accurate quantification of over 10% of adulterants in unifloral and 20% in multifloral honey

    Analysing local failure scenarios to assess the robustness of steel truss-type bridges

    Get PDF
    Many of the steel bridge collapses occur in truss-type bridges. This is, in fact, the focus of this study involving an assessment of the robustness of this type of structures based on an actual bridge that the authors had extensively monitored and controlled. Robustness was assessed by means of computer simulations of various Damage Scenarios (DSs) to analyse the structural bridge capacity to efficiently activate Alternative Load Paths (ALPs). The computational models have been previously validated with the results of load tests on the bridge and a laboratory test on a full-scale bridge span. The DSs have considered a series of non-simultaneous failures in different elements. The results indicate that the structure is capable of not triggering a disproportionate collapse after each of the DSs with the help of the efficient activation of ALPs that required the contribution of other elements with extra-strength capacity as well as from the superstructure and the joints working under bending moments. The results were used as the basis for practical recommendations for: i) the design of new steel bridges and the retrofit of existing ones and ii) monitoring the structure for the optimal position of sensors to predict local failures that could spread to the rest of the bridge

    Characterization and Comparison of Ocular Surface Microbiome in Newborns

    Get PDF
    The ocular microbiome is of fundamental importance for immune eye homeostasis, and its alteration would lead to an impairment of ocular functionality. Little evidence is reported on the composition of the ocular microbiota of term infants and on the impact of antibiotic prophylaxis. Methods: A total of 20 conjunctival swabs were collected from newborns at birth and after antibiotic treatment. Samples were subjected to 16S rRNA sequencing via system MiSeq Illumina. The data were processed with the MicrobAT software and statistical analysis were performed using two-way ANOVA. Results: Antibiotic prophylaxis with gentamicin altered the composition of the microbiota. In detail, a 1.5- and 2.01-fold reduction was recorded for Cutibacterium acnes (C. acnes) and Massilia timonae (M. timonae), respectively, whereas an increase in Staphylococcus spp. of 6.5 times occurred after antibiotic exposure. Conclusions: Antibiotic prophylaxis altered the ocular microbiota whose understanding could avoid adverse effects on eye health

    Impact of intrauterine growth restriction on cerebral and renal oxygenation and perfusion during the first 3 days after birth

    Get PDF
    Intrauterine growth restriction (IUGR) is associated with a higher incidence of perinatal complications as well as cardiovascular and renal diseases later on. A better insight into the disease mechanisms underlying these sequalae is important in order to identify which IUGR infants are at a higher risk and find strategies to improve their outcome. In this prospective case–control study we examined whether IUGR had any effect on renal and cerebral perfusion and oxygen saturation in term neonates. We integrated near-infrared spectroscopy (NIRS), echocardiographic, Doppler and renal function data of 105 IUGR infants and 105 age/gender-matched controls. Cerebral and renal regional oxygen saturation values were measured by NIRS during the first 12 h after birth. Echocardiography alongside Doppler assessment of renal and anterior cerebral arteries were performed at 6, 24, 48 and 72 h of age. Glomerular and tubular functions were also assessed. We found a left ventricular dysfunction together with a higher cerebral oxygen saturation and perfusion values in the IUGR group. IUGR term infants showed a higher renal oxygen saturation and a reduced oxygen extraction together with a subclinical renal damage, as indicated by higher values of urinary neutrophil gelatinase-associated lipocalin and microalbumin. These data suggest that some of the haemodynamic changes present in growth-restricted foetuses may persist postnatally. The increased cerebral oxygenation may suggest an impaired transition to normal autoregulation as a consequence of intra-uterine chronic hypoxia. The higher renal oxygenation may reflect a reduced renal oxygen consumption due to a subclinical kidney damage

    Identification of candidate children for maturity-onset diabetes of the young type 2 (MODY2) gene testing: a seven-item clinical flowchart (7-iF)

    Get PDF
    MODY2 is the most prevalent monogenic form of diabetes in Italy with an estimated prevalence of about 0.5–1.5%. MODY2 is potentially indistinguishable from other forms of diabetes, however, its identification impacts on patients’ quality of life and healthcare resources. Unfortunately, DNA direct sequencing as diagnostic test is not readily accessible and expensive. In addition current guidelines, aiming to establish when the test should be performed, proved a poor detection rate. Aim of this study is to propose a reliable and easy-to-use tool to identify candidate patients for MODY2 genetic testing. We designed and validated a diagnostic flowchart in the attempt to improve the detection rate and to increase the number of properly requested tests. The flowchart, called 7-iF, consists of 7 binary ‘‘yes or no’’ questions and its unequivocal output is an indication for whether testing or not. We tested the 7-iF to estimate its clinical utility in comparison to the clinical suspicion alone. The 7-iF, in a prospective 2-year study (921 diabetic children) showed a precision of about the 76%. Using retrospective data, the 7-iF showed a precision in identifying MODY2 patients of about 80% compared to the 40% of the clinical suspicion. On the other hand, despite a relatively high number of missing MODY2 patients, the 7-iF would not suggest the test for 90% of the non-MODY2 patients, demonstrating that a wide application of this method might 1) help less experienced clinicians in suspecting MODY2 patients and 2) reducing the number of unnecessary tests. With the 7-iF, a clinician can feel confident of identifying a potential case of MODY2 and suggest the molecular test without fear of wasting time and money. A Qaly-type analysis estimated an increase in the patients’ quality of life and savings for the health care system of about 9 million euros per year
    corecore