1,788 research outputs found

    Status report of the CERN microwave axion experiment

    Full text link
    "Light Shining Through the Wall" experiments can probe the existence of "axion like particles" through their weak coupling to photons. We have adapted such an experiment to the microwave regime and constructed the table top apparatus. This work presents an overview of the experimental setup and then focuses on our latest measurement run and its results. By operating the apparatus within a superconducting MRI magnet, competitive exclusion limits for axion like particles to the first generation optical light shining through the wall experiments have been achieved.Comment: Contributed to the 9th Patras Workshop on Axions, WIMPs and WISPs, Mainz, June 24-28, 201

    Status report and first results of the microwave LSW experiment at CERN

    Full text link
    To detect or exclude the existence of hidden sector photons or axion like particles, a table-top "microwaves shining through the wall" experiment has been set up at CERN. An overview of the experimental layout is given, the technical challenges involved are reviewed and the measurement procedure including data-evaluation and its results to date are shown.Comment: Contributed to the 8th Patras Workshop on Axions, WIMPs and WISPs, Chicago, July 18-22, 201

    Status report of the CERN light shining through the wall experiment with microwave axions and related aspects

    Full text link
    One way to proof or exclude the existence of axion like particles is a microwave light shining through the wall experiment. In this publication we will emphasize on the engineering aspects of such a setup, currently under development at CERN. One critical point, to achieve meaningful results, is the electromagnetic shielding between axion-emitter and -receiver cavity, which needs to be in the order of 300 dB to improve over existing experimental bounds. The RF leakage or electromagnetic crosstalk between both cavities must be well controlled and quantified during the complete duration of the experiment. A very narrow band (in the 10^-6 Hz range) homodyne detection method is used to reveal the axion signal from background thermal noise. The current status of the experiment is presented.Comment: Contributed to the "7th Patras Workshop on Axions, WIMPs and WISPs", Mykonos June 26 - July 1 201

    First results of the CERN Resonant WISP Search (CROWS)

    Full text link
    The CERN Resonant WISP Search (CROWS) probes the existence of Weakly Interacting Sub-eV Particles (WISPs) like axions or hidden sector photons. It is based on the principle of an optical light shining through the wall experiment, adapted to microwaves. Critical aspects of the experiment are electromagnetic shielding, design and operation of low loss cavity resonators and the detection of weak sinusoidal microwave signals. Lower bounds were set on the coupling constant g=4.5108g = 4.5 \cdot 10^{-8} GeV1^{-1} for axion like particles with a mass of ma=7.2μm_a = 7.2 \mueV. For hidden sector photons, lower bounds were set for the coupling constant χ=4.1109\chi = 4.1 \cdot 10^{-9} at a mass of mγ=10.8μm_{\gamma'} = 10.8 \mueV. For the latter we were probing a previously unexplored region in the parameter space

    Application of Magnetic Markers for Precise Measurement of Magnetic Fields in Ramped Accelerators

    Get PDF
    For precise measurements of the magnetic field in ramped machines, different magnetic markers are in use. The best known are peaking strips, Nuclear Magnetic Resonance (NMR) probes and Electron Spin Resonance (ESR) probes. Their operational principles and limitations are explained and some examples of recent and new applications are given. A fuller theoretical description is given of the lesser-known Ferrimagnetic Resonance (FMR) probe and its practical application. The essential purpose of these magnetic markers is the in situ calibration of either on-line magnetic field measurements (e.g. via a magnetic pick-up coil) or field predictions (e.g. using a magnet model)

    Interface Engineering to Create a Strong Spin Filter Contact to Silicon

    Get PDF
    Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (ii) an insituin\:situ hydrogen-Si (001)(001) passivation and (iiii) the application of oxygen-protective Eu monolayers --- without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime --- and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001)(001) in order to create a strong spin filter contact to silicon.Comment: 11 pages of scientific paper, 10 high-resolution color figures. Supplemental information on the thermodynamic problem available (PDF). High-resolution abstract graphic available (PNG). Original research (2016

    Surface Resistance Measurements for the LHC Beam Screen

    Get PDF
    A critical review of resistive losses in the LHC beam screen, taking into account anomalous skin effect and surface roughness, has triggered a programme of surface resistance measurements at different temperatures, frequencies and magnetic field intensities. The aim is to establish a realistic heating budget for the LHC cryogenic system and to optimize the fabrication process for the copper coating of the beam screen. Preliminary results at cryogenic temperatures (without magnetic field) indicate a surface resistance about a factor two larger than previously estimated: an absolute measurement precision of a few per cent is reached by comparing the quality factors of even and odd TEM modes in a cylindrical structure with two inner conductors

    Integration over the quantum diagonal subgroup and associated Fourier-like algebras

    Full text link
    By analogy with the classical construction due to Forrest, Samei and Spronk we associate to every compact quantum group G\mathbb{G} a completely contractive Banach algebra AΔ(G)A_\Delta(\mathbb{G}), which can be viewed as a deformed Fourier algebra of G\mathbb{G}. To motivate the construction we first analyse in detail the quantum version of the integration over the diagonal subgroup, showing that although the quantum diagonal subgroups in fact never exist, as noted earlier by Kasprzak and So{\l}tan, the corresponding integration represented by a certain idempotent state on C(G)C(\mathbb{G}) makes sense as long as G\mathbb{G} is of Kac type. Finally we analyse as an explicit example the algebras AΔ(ON+)A_\Delta(O_N^+), N2N\ge 2, associated to Wang's free orthogonal groups, and show that they are not operator weakly amenable.Comment: Minor updates; Remark 5.7 has been added; 31 page
    corecore