440 research outputs found
Anatomy, morphology and evolution of the patella in squamate lizards and tuatara (Sphenodon punctatus)
The patella (kneecap) is the largest and best-known of the sesamoid bones, postulated to confer biomechanical advantages including increasing joint leverage and reinforcing the tendon against compression. It has evolved several times independently in amniotes, but despite apparently widespread occurrence in lizards, the patella remains poorly characterised in this group and is, as yet, completely undescribed in their nearest extant relative Sphenodon (Rhynchocephalia). Through radiography, osteological and fossil studies we examined patellar presence in diverse lizard and lepidosauromorph taxa, and using computed tomography, dissection and histology we investigated in greater depth the anatomy and morphology of the patella in 16 lizard species and 19 Sphenodon specimens. We have found the first unambiguous evidence of a mineralised patella in Sphenodon, which appears similar to the patella of lizards and shares several gross and microscopic anatomical features. Although there may be a common mature morphology, the squamate patella exhibits a great deal of variability in development (whether from a cartilage anlage or not, and in the number of mineralised centres) and composition (bone, mineralised cartilage or fibrotendinous tissue). Unlike in mammals and birds, the patella in certain lizards and Sphenodon appears to be a polymorphic trait. We have also explored the evolution of the patella through ancestral state reconstruction, finding that the patella is ancestral for lizards and possibly Lepidosauria as a whole. Clear evidence of the patella in rhynchocephalian or stem lepidosaurian fossil taxa would clarify the evolutionary origin(s) of the patella, but due to the small size of this bone and the opportunity for degradation or loss we could not definitively conclude presence or absence in the fossils examined. The pattern of evolution in lepidosaurs is unclear but our data suggest that the emergence of this sesamoid may be related to the evolution of secondary ossification centres and/or changes in knee joint conformation, where enhancement of extensor muscle leverage would be more beneficial.Sophie Regnault, Marc E. H. Jones, Andrew A. Pitsillides, John R. Hutchinso
Novel associations for hypothyroidism include known autoimmune risk loci
Hypothyroidism is the most common thyroid disorder, affecting about 5% of the general population. Here we present the first large genome-wide association study of hypothyroidism, in 2,564 cases and 24,448 controls from the customer base of 23andMe, Inc., a personal genetics company. We identify four genome-wide significant associations, two of which are well known to be involved with a large spectrum of autoimmune diseases: rs6679677 near _PTPN22_ and rs3184504 in _SH2B3_ (p-values 3.5e-13 and 3.0e-11, respectively). We also report associations with rs4915077 near _VAV3_ (p-value 8.3e-11), another gene involved in immune function, and rs965513 near _FOXE1_ (p-value 3.1e-14). Of these, the association with _PTPN22_ confirms a recent small candidate gene study, and _FOXE1_ was previously known to be associated with thyroid-stimulating hormone (TSH) levels. Although _SH2B3_ has been previously linked with a number of autoimmune diseases, this is the first report of its association with thyroid disease. The _VAV3_ association is novel. These results suggest heterogeneity in the genetic etiology of hypothyroidism, implicating genes involved in both autoimmune disorders and thyroid function. Using a genetic risk profile score based on the top association from each of the four genome-wide significant regions in our study, the relative risk between the highest and lowest deciles of genetic risk is 2.1
Breeding young as a survival strategy during earth’s greatest mass extinction
Studies of the effects of mass extinctions on ancient ecosystems have focused on changes in taxic diversity, morphological disparity, abundance, behaviour and resource availability as key determinants of group survival. Crucially, the contribution of life history traits to survival during terrestrial mass extinctions has not been investigated, despite the critical role of such traits for population viability. We use bone microstructure and body size data to investigate the palaeoecological implications of changes in life history strategies in the therapsid forerunners of mammals before and after the Permo-Triassic Mass Extinction (PTME), the most catastrophic crisis in Phanerozoic history. Our results are consistent with truncated development, shortened life expectancies, elevated mortality rates and higher extinction risks amongst post-extinction species. Various simulations of ecological dynamics indicate that an earlier onset of reproduction leading to shortened generation times could explain the persistence of therapsids in the unpredictable, resource-limited Early Triassic environments, and help explain observed body size distributions of some disaster taxa (e.g., Lystrosaurus). Our study accounts for differential survival in mammal ancestors after the PTME and provides a methodological framework for quantifying survival strategies in other vertebrates during major biotic crises
Technique de marquage en masse de civelles (Anguilla anguilla L.) par balnéation rapide dans le fluorochrome. Application au marquage à la tétracycline de 500 Kg de civelles
Controlling the {111}/{110} Surface Ratio of Cuboidal Ceria Nanoparticles
The ability to control size and morphology is crucial in optimizing nanoceria catalytic activity as this is governed by the atomistic arrangement of species and structural features at the surfaces. Here, we show that cuboidal cerium oxide nanoparticles can be obtained via microwave-assisted hydrothermal synthesis in highly alkaline media. HRTEM revealed that the cube edges were truncated by CeO2{110} surfaces and the cube corners by CeO2{111} surfaces. When adjusting synthesis conditions by increasing NaOH concentration, the average particle size increased. Although this was accompanied by an increase of the cube faces, CeO2{100}, the cube edges, CeO2{110}, and cube corners, CeO2{111} remained of constant size. Molecular Dynamics (MD) was used to rationalise this behaviour and revealed that energetically, the corners and edges cannot be atomically sharp, rather they are truncated by {111} and {110} surfaces respectively to stabilise the nanocube; both experiment and simulation agreed a minimum size of ~1.6 nm associated with this truncation. Moreover, HRTEM and MD revealed {111}/{110} faceting of the {110} edges, which balances the surface energy associated with the exposed surfaces, which follows {111}>{110}>{100}, although only the {110} surface facets because of the ease of extracting oxygen from its surface, which follows {111}>{100}>{110}. Finally, MD revealed that the {100} surfaces are ‘liquid-like’ with a surface oxygen mobility 5 orders of magnitude higher than that on the {111} surfaces; this arises from the flexibility of the surface species network that can access many different surface arrangements due to very small energy differences. This finding has implications for understanding the surface chemistry of nanoceria and provides avenues to rationalize the design of catalytically active materials at the nanoscale
Transcriptome, Methylome and Genomic Variations Analysis of Ectopic Thyroid Glands
Congenital hypothyroidism from thyroid dysgenesis (CHTD) is predominantly a sporadic disease characterized by defects in the differentiation, migration or growth of thyroid tissue. Of these defects, incomplete migration resulting in ectopic thyroid tissue is the most common (up to 80%). Germinal mutations in the thyroid-related transcription factors NKX2.1, FOXE1, PAX-8, and NKX2.5 have been identified in only 3% of patients with sporadic CHTD. Moreover, a survey of monozygotic twins yielded a discordance rate of 92%, suggesting that somatic events, genetic or epigenetic, probably play an important role in the etiology of CHTD.Journal ArticleResearch Support, Non-U.S. Gov'tValidation StudiesSCOPUS: ar.jinfo:eu-repo/semantics/publishe
Endemic Infection of the Amphibian Chytrid Fungus in a Frog Community Post-Decline
The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of numerous frog species worldwide. In Queensland, Australia, it has been proposed as the cause of the decline or apparent extinction of at least 14 high-elevation rainforest frog species. One of these, Taudactylus eungellensis, disappeared from rainforest streams in Eungella National Park in 1985–1986, but a few remnant populations were subsequently discovered. Here, we report the analysis of B. dendrobatidis infections in toe tips of T. eungellensis and sympatric species collected in a mark-recapture study between 1994 and 1998. This longitudinal study of the fungus in individually marked frogs sheds new light on the effect of this threatening infectious process in field, as distinct from laboratory, conditions. We found a seasonal peak of infection in the cooler months, with no evidence of interannual variation. The overall prevalence of infection was 18% in T. eungellensis and 28% in Litoria wilcoxii/jungguy, a sympatric frog that appeared not to decline in 1985–1986. No infection was found in any of the other sympatric species. Most importantly, we found no consistent evidence of lower survival in T. eungellensis that were infected at the time of first capture, compared with uninfected individuals. These results refute the hypothesis that remnant populations of T. eungellensis recovered after a B. dendrobatidis epidemic because the pathogen had disappeared. They show that populations of T. eungellensis now persist with stable, endemic infections of B. dendrobatidis
Crossover between Rayleigh-Taylor Instability and turbulent cascading atomization mechanism in the bag-breakup regime
The question whether liquid atomization (or pulverization) resorts to
instability dynamics (through refinements of Rayleigh-Plateau, Rayleigh-Taylor
or Kelvin-Helmholtz mechanism) or to turbulent cascades similar to Richardson
and Kolmogorov first ideas seems to be still open. In this paper, we report
experimental evidences that both mechanisms are needed to explain the spray
drop PDF obtained from an industrial nozzle. Instability of Rayleigh-Taylor
kind governs the size of the largest droplets while the smallest ones obey a
PDF given by a turbulent cascading mechanism resulting in a log-L\'evy stable
law of stability parameter close to 1.68. This value, very close to the inverse
of the Flory exponent, can be related to a recent model for intermittency
modeling stemming from self-avoiding random vortex stretching.Comment: new alpha version (precedent was a draft
Preliminary observations on the bone histology of the Middle Triassic pseudosuchian archosaur Batrachotomus kupferzellensis
- …
