9 research outputs found
Pancreatic beta cell protection/regeneration with phytotherapy
Although currently available drugs are useful in controlling early onset complications of diabetes, serious late onset complications appear in a large number of patients. Considering the physiopathology of diabetes, preventing beta cell degeneration and stimulating the endogenous regeneration of islets will be essential approaches for the treatment of insulin-dependent diabetes mellitus. The current review focused on phytochemicals, the antidiabetic effect of which has been proved by pancreatic beta cell protection/regeneration. Among the hundreds of plants that have been investigated for diabetes, a small fraction has shown the regenerative property and was described in this paper. Processes of pancreatic beta cell degeneration and regeneration were described. Also, the proposed mechanisms for the protective/regenerative effects of such phytochemicals and their potential side effects were discussed
The effect of a novel curcumin derivative on pancreatic islet regeneration in experimental type-1 diabetes in rats (long term study)
Identification of a putative egg-laying hormone in neural and ovarian tissues of the black tiger shrimp, Penaeus monodon, using immunocytochemistry
The existence of an egg-laying hormone (ELH) was identified for the first time in the black tiger shrimp, Penaeus monodon, by means of immunoenzyme and immunofluorescence techniques. This was achieved using a polyclonal antibody produced against expressed recombinant ELH of the female Australian blacklip abalone, Haliotis rubra. The shrimp ELH reactive material was found to be localised within female neurosecretory tissues and the secretory tissue of the antennal gland, but was not identified in the X-organ sinus gland within the eyestalk. It was also present in the ovary, where the amount of ELH present was observed to be greatest in the period prior to spawning. These findings implied that the induction of P. monodon spawning might be involved with humoral regulation relating to ELH expression.<br /
Curcumin induces regeneration of β cells and suppression of phosphorylated-NF-κB in streptozotocin-induced diabetic mice
Redox imbalance stress in diabetes mellitus: Role of the polyol pathway
In diabetes mellitus, the polyol pathway is highly active and consumes approximately 30% glucose in the body. This pathway contains 2 reactions catalyzed by aldose reductase (AR) and sorbitol dehydrogenase, respectively. AR reduces glucose to sorbitol at the expense of NADPH, while sorbitol dehydrogenase converts sorbitol to fructose at the expense of NAD(+), leading to NADH production. Consumption of NADPH, accumulation of sorbitol, and generation of fructose and NADH have all been implicated in the pathogenesis of diabetes and its complications. In this review, the roles of this pathway in NADH/NAD(+) redox imbalance stress and oxidative stress in diabetes are highlighted. A potential intervention using nicotinamide riboside to restore redox balance as an approach to fighting diabetes is also discussed.The writing of this review article was supported in part by UNTHSCseed grants RI10015 and RI10039 and by the National Institutes ofHealth (grant no. R01NS079792)
