432 research outputs found

    Using functional approach in translating arab spring topics: aljazeera and BBC arabic as study cases

    Get PDF
    In the last two decades there was an increasing interest in the relationship between media translation and ideology. The study sample of this article is the Arab Spring that attracted the attention of various western and Arab media channels like Aljazeera and the BBC. It is reported that each channel may be inclined certain translation strategies that may not necessarily be adopted by the other channel at the same time which entails that the translation in these media outlets is not random and unbiased. Therefore, the findings of the current work will be helpful for translators that are working in such media institutions

    Study on machinability effect of surface roughness in milling kenaf fiber reinforced plastic composite (unidirectional) using response surface methodology

    Get PDF
    Link to publisher's homepage at http://www.arpnjournals.org/The surface roughness factor (Ra) of a milled kenaf reinforced plastic are depending on the milling parameters (spindle speed, feed rate and depth of cut). Therefore, a study was carried out to investigate the relationship between the milling parameters and their effects on a kenaf reinforced plastic. The composite panels were fabricated using vacuum assisted resin transfer molding (VARTM) method. A full factorial design of experiments was used as an initial step to screen the significance of the parameters on the defects using Analysis of Variance (ANOVA). If the curvature of the collected data shows significant, Response Surface Methodology (RSM) is then applied for obtaining a quadratic modelling equation which has more reliable in expressing the optimization. Thus, the objective of this research is obtaining an optimum setting of milling parameters and modelling equations to minimize the surface roughness factor (Ra) of milled kenaf reinforced plastic. The spindle speed and feed rate contributed the most in affecting the surface roughness factor (Ra) of the kenaf composite

    End-mill carbide tool wear in machining metallic biomaterial

    Get PDF
    Machining of metallic biomaterials causes a slew of issues, including cutting tool wear and poor surface quality owing to inefficient tool design, which leads to excessive heat output. The objective of the research is to evaluate the wear of developed of uncoated carbide endmill tool with rake angle varied from positive to negative value in dry machining Stellite 21. The fabricated endmill is tested at Fanuc Robodill α-T14iFb with cutting conditions parameters are kept constant; including cutting speed (Vc): 60 m/min, feed rate (f): 153 mm/rev, and depth of cut (ap): 0.2 mm, throughout the cutting trials. The accuracy of fabricated endmill, wear mechanism, cutting force, and surface roughness were measured using Dino-Lite Microscope, Scanning Electron Microscope, Neo-Momac Dynamometer and Mitutoyo Surface Profiler, respectively. The result shows that by using a positive rake angle, the phenomenon of tool wear is reduced, and directly reducing the surface roughness and cutting force. Based on energy dispersive x-ray (EDX) element analysis, presence of oxygen in the cutting process which indicates the occurrence of oxidation wear on cutting tool. Extended observation of wear mechanism show high content of chromium on the flank face is revealed that indicated the diffusion wear on tools has occurred. In conclusion, the enhancement of tool geometry of endmill cutting tool is a key step toward sustainable manufacturing of high-end applications in biomedical industries

    A Mini Review on Working Mechanism, Standard Operating Procedure (SOP) and Preventative Maintenance of Low Temperature Long Term (LTLT) Milk Pasteurizer

    Get PDF
    A small-scaled batch Low Temperature- Long Term (LTLT) pasteurizer is one of many types of pasteurizers that is being utilized in food-based industries particularly in dairies. It has a capacity of heating up the milk and holding the temperature for a certain amount of time to kill pathogenic microorganisms. The instantaneous heat up is caused by heat exchangers either in the form of plates or metal coils depending on the machine. The coil is circulated within the jacket of the tank where it heats up and holds the temperature. Hot water circulation will be in continuous movement around the milk to heat it up and maintain the desired temperature. After certain period, the efficiency of LTLT pasteurizer starts declining due to cumulated issues. Decline in efficiency will affect the output of the machine too. Instantaneous heat exchanges, leaking, unstable pressure and electrical problem degrades the machine over period if it is not complying with Standard Operating Procedure (SOP) and a proper Preventative Maintenance (PM) plan. The SOP and PM will increase the machine’s lifespan and maintain a good efficiency rate for longer period. This mini review paper will compile the possible PM plan and establish a sustainable SOP for the LTLT Pasteurizer

    Cutting tool wear progression index via signal element variance

    Get PDF
    This paper presents a new statistical-based method of cutting tool wear progression in a milling process called Z-rotation method in association with tool wear progression. The method is a kurtosis-based that calculates the signal element variance from its mean as a measurement index. The measurement index can be implicated to determine the severity of wear. The study was conducted to strengthen the shortage in past studies notably considering signal feature extraction for the disintegration of non-deterministic signals. The Cutting force and vibration signals were measured as a tool of sensing element to study wear on the cutting tool edge at the discrete machining conditions. The monitored flank wear progression by the value of the RZ index, which then outlined in the model data pattern concerning wear and number of samples. Throughout the experimental studies, the index shows a significant degree of nonlinearity that appears in the measured impact. For that reason, the accretion of force components by Z-rotation method has successfully determined the abnormality existed in the signal data for both force and vibration. It corresponds to the number of cutting specifies a strong correlation over wear evolution with the highest correlation coefficient of R2 = 0.8702 and the average value of R2 = 0.8147. The index is more sensitive towards the end of the wear stage compared to the previous methods. Thus, it can be utilised to be the alternative experimental findings for monitoring tool wear progression by using threshold values on certain cutting condition

    Performance of Coated Carbide Tools when Turning Inconel Alloy 718 under Cryogenic Condition using RSM / N. Badroush ...[et al.]

    Get PDF
    This paper investigates the influence of cutting parameters on different responses variables and the performance of PVD coated carbide cutting tool when turning Inconel 718 under cryogenic condition. The factors and range of parameters investigated are; cutting speed (90-150 m/min), feed rate (0.05-0.2mm/rev) and depth of cut (0.25-0.75mm). The experimental runs were established using Box-Behnken design experiment. For the responses, 2 variables were evaluated which are surface roughness (Ra) of the machined surface and tool life (TL) of the insert. Analysis of Variance (ANOVA) was used to identify factors which significantly affect the response variables. From the analysis, the cutting speed and feed rate are the most significant factors affecting the TL followed by the depth of cut. While for the Ra, the interaction of feed rate and depth of cut are the most significant, followed by the depth of cut. The prediction Ra and TL models were developed with 95% of prediction interval between the predicted and actual experiments using the optimal parameters

    Prediction of Cutting Force in End Milling of Inconel 718

    Get PDF
    This paper presents the effect of cutting parameters on the cutting force when machining Inconel 718. Response surface methodology (RSM) was used in the experiment, and a Box–Behnken design was employed to identify the cause and effect of the relationship between the four cutting parameters (cutting speed, feed rate, depth of cut and width of cut) and cutting force. The ball-nose type of end mill with donwmill approach was maitained througout the experiment. The forces were measured using Kistler dynamometer during straight line machining strategy. The result shows that the radial depth of cut was the dominating factor controlling cutting force, it was followed by axial depth of cut and feed rate. The prediction cutting force model was developed with the average error between the predicted and actual cutting force was less than 3

    A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials

    Get PDF
    Metallic biomaterials have been employed in replacing and reconstructing the structural parts of the human physical structure due to their high mechanical properties, superior biocompatibility, and high corrosion resistance. The most common metallic biomaterials that have been used in implants include magnesium, stainless steel, cobalt-based alloy, titanium, and titanium-based alloy. Hydroxyapatite (Ca10(PO4)6(OH)2) is one of the ceramic biomaterials considered as ideal materials for coating on metallic biomaterials as it possesses almost the closest similarity in chemical composition and excellent biocompatibility with natural bone tissue. Recently, the HAp-based coating has increasingly drawn attention to improve the adhesion quality in metallic biomaterials. This study comprehensively reviews the current progress in the adhesion qualities of HAp-based coatings on metallic biomaterials specifically for the biomedical application. It has been observed that a surface that meets the minimum unique characteristics will enhance the bonding force between the coating and metallic biomaterial as the substrate. Critical factors of coating/substrate materials, coating techniques, and coating thickness that determine the adhesion quality are thoroughly identified and discussed. The surface structure and microstructure of HAp-based coating are also reviewed to confirm the findings

    Comparative study between wear of uncoated and TiAlN-coated carbide tools in milling of Ti6Al4V

    Get PDF
    As is recognized widely, tool wear is a major problem in the machining of difficult-to-cut titanium alloys. Therefore, it is of significant interest and importance to understand and determine quantitatively and qualitatively tool wear evolution and the underlying wear mechanisms. The main aim of this paper is to investigate and analyse wear, wear mechanisms and surface and chip generation of uncoated and TiAlN-coated carbide tools in a dry milling of Ti6Al4V alloys. The quantitative flank wear and roughness were measured and recorded. Optical and scanning electron microscopy (SEM) observations of the tool cutting edge, machined surface and chips were conducted. The results show that the TiAlN-coated tool exhibits an approximately 44% longer tool life than the uncoated tool at a cutting distance of 16 m. A more regular progressive abrasion between the flank face of the tool and the workpiece is found to be the underlying wear mechanism. The TiAlN-coated tool generates a smooth machined surface with 31% lower roughness than the uncoated tool. As is expected, both tools generate serrated chips. However, the burnt chips with blue color are noticed for the uncoated tool as the cutting continues further. The results are shown to be consistent with observation of other researchers, and further imply that coated tools with appropriate combinations of cutting parameters would be able to increase the tool life in cutting of titanium alloys
    corecore