431 research outputs found
Cyclin D1 Restrains Oncogene-Induced Autophagy by Regulating the AMPK-LKB1 Signaling Axis.
Autophagy activated after DNA damage or other stresses mitigates cellular damage by removing damaged proteins, lipids, and organelles. Activation of the master metabolic kinase AMPK enhances autophagy. Here we report that cyclin D1 restrains autophagy by modulating the activation of AMPK. In cell models of human breast cancer or in a cyclin D1-deficient model, we observed a cyclin D1-mediated reduction in AMPK activation. Mechanistic investigations showed that cyclin D1 inhibited mitochondrial function, promoted glycolysis, and reduced activation of AMPK (pT172), possibly through a mechanism that involves cyclin D1-Cdk4/Cdk6 phosphorylation of LKB1. Our findings suggest how AMPK activation by cyclin D1 may couple cell proliferation to energy homeostasis
Depletion of pre-mRNA splicing factor Cdc5L inhibits mitotic progression and triggers mitotic catastrophe.
Disturbing mitotic progression via targeted anti-mitotic therapy is an attractive strategy for cancer treatment. Therefore, the exploration and elucidation of molecular targets and pathways in mitosis are critical for the development of anti-mitotic drugs. Here, we show that cell division cycle 5-like (Cdc5L), a pre-mRNA splicing factor, is a regulator of mitotic progression. Depletion of Cdc5L causes dramatic mitotic arrest, chromosome misalignments and sustained activation of spindle assembly checkpoint, eventually leading to mitotic catastrophe. Moreover, these defects result from severe impairment of kinetochore-microtubule attachment and serious DNA damage. Genome-wide gene expression analysis reveals that Cdc5L modulates the expression of a set of genes involved in the mitosis and the DNA damage response. We further found that the pre-mRNA splicing efficiency of these genes were impaired when Cdc5L was knocked down. Interestingly, Cdc5L is highly expressed in cervical tumors and osteosarcoma. Finally, we demonstrate that downregulation of Cdc5L decreases the cell viability of related tumor cells. These results suggest that Cdc5L is a key regulator of mitotic progression and highlight the potential of Cdc5L as a target for cancer therapy
Decylammonium octanoate
The title compound, C10H24N+·C8H15O2
−, forms a layered structure in which intermolecular N+—H⋯O hydrogen bonds connect anions and cations, forming a two-dimensional network parallel to (010). The n-alkyl chains of the decylammonium cations pack according to an orthorhombic ‘subcell’ with approximate dimensions 5.1 × 7.3 Å, and they are significantly distorted from planarity
Modeling genetic imprinting effects of DNA sequences with multilocus polymorphism data
Single nucleotide polymorphisms (SNPs) represent the most widespread type of DNA sequence variation in the human genome and they have recently emerged as valuable genetic markers for revealing the genetic architecture of complex traits in terms of nucleotide combination and sequence. Here, we extend an algorithmic model for the haplotype analysis of SNPs to estimate the effects of genetic imprinting expressed at the DNA sequence level. The model provides a general procedure for identifying the number and types of optimal DNA sequence variants that are expressed differently due to their parental origin. The model is used to analyze a genetic data set collected from a pain genetics project. We find that DNA haplotype GAC from three SNPs, OPRKG36T (with two alleles G and T), OPRKA843G (with alleles A and G), and OPRKC846T (with alleles C and T), at the kappa-opioid receptor, triggers a significant effect on pain sensitivity, but with expression significantly depending on the parent from which it is inherited (p = 0.008). With a tremendous advance in SNP identification and automated screening, the model founded on haplotype discovery and statistical inference may provide a useful tool for genetic analysis of any quantitative trait with complex inheritance
Spectral imaging and nucleic acid mimics fluorescence in situ hybridization (SI-NAM-FISH) for multiplex detection of clinical pathogens
The application of nucleic acid mimics (NAMs), such as locked nucleic acid (LNA) and 2′-O-methyl-RNA (2’OMe), has improved the performance of fluorescence in situ hybridization (FISH) methods for the detection/location of clinical pathogens since they provide design versatility and thermodynamic control. However, an important limitation of FISH techniques is the low number of distinguishable targets. The use of filters in fluorescence image acquisition limits the number of fluorochromes that can be simultaneously differentiated. Recent advances in fluorescence spectral image acquisition have allowed the unambiguous identification of several microorganisms in a single sample. In this work, we aimed to combine NAM-FISH and spectral image analysis to develop and validate a new FISH variant, the spectral imaging-NAM-FISH (SI-NAM-FISH), that allows a multiplexed, robust and rapid detection of clinical pathogens. In the first stage, to implement/validate the method, we have selected seven fluorochromes with distinct spectral properties and seven bacterial species (Pseudomonas aeruginosa, Citrobacter freundii, Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli, and Acinetobacter calcoaceticus). As a strong variation in fluorescence intensities is found between species and between fluorochromes, seven versions of a EUB LNA/2’OMe probe, each conjugated to one of seven fluorochromes, were used to rank species/fluorochromes by FISH and then optimize species/fluorochrome pairing. Then, final validation tests were performed using mixed populations to evaluate the potential of the technique for separating/quantifying the different targets. Overall, validation tests with different proportions of bacteria labeled with the respective fluorochrome have shown the ability of the method to correctly distinguish the species.</p
A Bodyweight-Dependent Allometric Exponent for Scaling Clearance Across the Human Life-Span
Purpose: To explore different allometric equations for scaling clearance across the human life-span using propofol as a model drug. Methods: Data from seven previously published propofol studies ((pre)term neonates, infants, toddlers, children, adolescents and adults) were analysed using NONMEM VI. To scale clearance, a bodyweight-based exponential equation with four different structures for the exponent was used: (I) 3/4 allometric scaling model; (II) mixture model; (III) bodyweight-cut-point separated model; (IV) bodyweight-dependent exponent model. Results: Model I adequately described clearance in adults and older children, but overestimated clearance of neonates and underestimated clearance of infants. Use of two different exponents in Model II and Model III showed significantly improved performance, but yielded ambiguities on the boundaries of the two subpopulations. This discontinuity was overcome in Model IV, in which the exponent changed sigmoidally from 1.35 at a hypothetical bodyweight of 0 kg to a value of 0.56 from 10 kg onwards, thereby describing clearance of all individuals best. Conclusions: A model was developed for scaling clearance over the entire human life-span with a single continuous equation, in which the exponent of the bodyweight-based exponential equation varied with bodyweight
Intrinsic properties of human germinal center B cells set antigen affinity thresholds
Protective antibody responses to vaccination or infection depend on affinity maturation, a process by which high-affinity germinal center (GC) B cells are selected on the basis of their ability to bind, gather, and present antigen to T follicular helper (Tfh) cells. Here, we show that human GC B cells have intrinsically higher-affinity thresholds for both B cell antigen receptor (BCR) signaling and antigen gathering as compared with naïve B cells and that these functions are mediated by distinct cellular structures and pathways that ultimately lead to an- tigen affinity– and Tfh cell–dependent differentiation to plasma cells. GC B cells bound antigen through highly dynamic, actin- and ezrin-rich pod-like structures that concentrated BCRs. The behavior of these structures was dictated by the intrinsic antigen affinity thresholds of GC B cells. Low-affinity antigens triggered continuous engagement and disengagement of membrane-associated antigens, whereas high-affinity antigens induced stable synapse formation. The pod-like structures also mediated affinity-dependent antigen internalization by unconventional pathways distinct from those of naïve B cells. Thus, intrinsic properties of human GC B cells set thresholds for affinity selection
New highly-anisotropic Rh-based Heusler compound for magnetic recording
The development of high-density magnetic recording media is limited by the
superparamagnetism in very small ferromagnetic crystals. Hard magnetic
materials with strong perpendicular anisotropy offer stability and high
recording density. To overcome the difficulty of writing media with a large
coercivity, heat assisted magnetic recording (HAMR) has been developed, rapidly
heating the media to the Curie temperature Tc before writing, followed by rapid
cooling. Requirements are a suitable Tc, coupled with anisotropic thermal
conductivity and hard magnetic properties. Here we introduce Rh2CoSb as a new
hard magnet with potential for thin film magnetic recording. A
magnetocrystalline anisotropy of 3.6 MJm-3 is combined with a saturation
magnetization of {\mu}0Ms = 0.52 T at 2 K (2.2 MJm-3 and 0.44 T at
room-temperature). The magnetic hardness parameter of 3.7 at room temperature
is the highest observed for any rare-earth free hard magnet. The anisotropy is
related to an unquenched orbital moment of 0.42 {\mu}B on Co, which is
hybridized with neighbouring Rh atoms with a large spin-orbit interaction.
Moreover, the pronounced temperature-dependence of the anisotropy that follows
from its Tc of 450 K, together with a high thermal conductivity of 20 Wm-1K-1,
makes Rh2CoSb a candidate for development for heat assisted writing with a
recording density in excess of 10 Tb/in2
- …
