43 research outputs found
Solid state lithiation-delithiation of sulphur in sub-nano confinement: a new concept for designing lithium-sulphur batteries.
We investigate the detailed effects and mechanisms of sub-nano confinement on lithium-sulfur (Li-S) electrochemical reactions in both ether-based and carbonate-based electrolytes. Our results demonstrate a clear correlation between the size of sulfur confinement and the resulting Li-S electrochemical mechanisms. In particular, when sulfur is confined within sub-nano pores, we observe identical lithium-sulfur electrochemical behavior, which is distinctly different from conventional Li-S reactions, in both ether and carbonate electrolytes. Taken together, our results highlight the critical importance of sub-nano confinement effects on controlling solid-state reactions in Li-S electrochemical systems
Confined lithium–sulfur reactions in narrow-diameter carbon nanotubes reveal enhanced electrochemical reactivity
We demonstrate an unusual electrochemical reaction of sulfur with lithium upon encapsulation in narrow-diameter (subnanometer) single-walled carbon nanotubes (SWNTs). Our study provides mechanistic insight on the synergistic effects of sulfur confinement and Li+ ion solvation properties that culminate in a new mechanism of these sub-nanoscale-enabled reactions (which cannot be solely attributed to the lithiation-delithiation of conventional sulfur). Two types of SWNTs with distinct diameters, produced by electric arc (EA-SWNTs, average diameter 1.55 nm) or high-pressure carbon monoxide (HiPco-SWNTs, average diameter 1.0 nm), are investigated with two comparable electrolyte systems based on tetraethylene glycol dimethyl ether (TEGDME) and 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5). Electrochemical analyses indicate that a conventional solution-phase Li-S reaction occurs in EA-SWNTs, which can be attributed to the smaller solvated [Li(TEGDME)]+ and [Li(15-crown-5)]+ ions within the EA-SWNT diameter. In stark contrast, the Li-S confined in narrower diameter HiPco-SWNTs exhibits unusual electrochemical behavior that can be attributed to a solid-state reaction enabled by the smaller HiPco-SWNT diameter compared to the size of solvated Li+ ions. Our results of the electrochemical analyses are corroborated and supported with various spectroscopic analyses including operando Raman, X-ray photoelectron spectroscopy, and first-principles calculations from density functional theory. Taken together, our findings demonstrate that the controlled solid-state lithiation-delithiation of sulfur and an enhanced electrochemical reactivity can be achieved by sub-nanoscale encapsulation and one-dimensional confinement in narrow-diameter SWNTs.Fil: Fu, Chengyin. University Of California Riverside; Estados UnidosFil: Oviedo, María Belén. University Of California Riverside; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Zhu, Yihan. Zhejiang University Of Technology; ChinaFil: von Wald Cresce, Arthur. U. S. Army Research Laboratory; Estados UnidosFil: Xu, Kang. U. S. Army Research Laboratory; Estados UnidosFil: Li, Guanghui. University Of California Riverside; Estados UnidosFil: Itkis, Mikhail E.. University Of California Riverside; Estados UnidosFil: Haddon, Robert C.. University Of California Riverside; Estados UnidosFil: Chi, Miaofang. Oak Ridge National Laboratory; Estados UnidosFil: Han, Yu. King Abdullah University Of Science And Technology; Arabia SauditaFil: Wong, Bryan M.. University Of California Riverside; Estados UnidosFil: Guo, Juchen. University Of California Riverside; Estados Unido
Artificially Induced Epithelial-Mesenchymal Transition in Surgical Subjects: Its Implications in Clinical and Basic Cancer Research
BACKGROUND: Surgical samples have long been used as important subjects for cancer research. In accordance with an increase of neoadjuvant therapy, biopsy samples have recently become imperative for cancer transcriptome. On the other hand, both biopsy and surgical samples are available for expression profiling for predicting clinical outcome by adjuvant therapy; however, it is still unclear whether surgical sample expression profiles are useful for prediction via biopsy samples, because little has been done about comparative gene expression profiling between the two kinds of samples. METHODOLOGY AND FINDINGS: A total of 166 samples (77 biopsy and 89 surgical) of normal and malignant lesions of the esophagus were analyzed by microarrays. Gene expression profiles were compared between biopsy and surgical samples. Artificially induced epithelial-mesenchymal transition (aiEMT) was found in the surgical samples, and also occurred in mouse esophageal epithelial cell layers under an ischemic condition. Identification of clinically significant subgroups was thought to be disrupted by the disorder of the expression profile through this aiEMT. CONCLUSION AND SIGNIFICANCE: This study will evoke the fundamental misinterpretation including underestimation of the prognostic evaluation power of markers by overestimation of EMT IN past cancer research, and will furnish some advice for the near future as follows: 1) Understanding how long the tissues were under an ischemic condition. 2) Prevalence of biopsy samples for in vivo expression profiling with low biases on basic and clinical research. 3) Checking cancer cell contents and normal- or necrotic-tissue contamination in biopsy samples for prevalence
CTLA4 Blockade Abrogates KEAP1/STK11-Related Resistance to PD-(L)1 Inhibitors
For patients with advanced non-small-cell lung cancer (NSCLC), dual immune checkpoint blockade (ICB) with CTLA4 inhibitors and PD-1 or PD-L1 inhibitors (hereafter, PD-(L)1 inhibitors) is associated with higher rates of anti-tumour activity and immune-related toxicities, when compared with treatment with PD-(L)1 inhibitors alone. However, there are currently no validated biomarkers to identify which patients will benefit from dual ICB1,2. Here we show that patients with NSCLC who have mutations in the STK11 and/or KEAP1 tumour suppressor genes derived clinical benefit from dual ICB with the PD-L1 inhibitor durvalumab and the CTLA4 inhibitor tremelimumab, but not from durvalumab alone, when added to chemotherapy in the randomized phase III POSEIDON trial3. Unbiased genetic screens identified loss of both of these tumour suppressor genes as independent drivers of resistance to PD-(L)1 inhibition, and showed that loss of Keap1 was the strongest genomic predictor of dual ICB efficacy-a finding that was confirmed in several mouse models of Kras-driven NSCLC. In both mouse models and patients, KEAP1 and STK11 alterations were associated with an adverse tumour microenvironment, which was characterized by a preponderance of suppressive myeloid cells and the depletion of CD8+ cytotoxic T cells, but relative sparing of CD4+ effector subsets. Dual ICB potently engaged CD4+ effector cells and reprogrammed the tumour myeloid cell compartment towards inducible nitric oxide synthase (iNOS)-expressing tumoricidal phenotypes that-together with CD4+ and CD8+ T cells-contributed to anti-tumour efficacy. These data support the use of chemo-immunotherapy with dual ICB to mitigate resistance to PD-(L)1 inhibition in patients with NSCLC who have STK11 and/or KEAP1 alterations
Magnetic iron oxide nanoparticles: synthesis and applications
Magnetic iron oxide nanoparticles are attracting increased attention due to their interesting properties that can be applied in a large number of applications such as catalysis and biomedicine. This paper focuses on the synthesis, characteristics, and biomedical applications of iron oxide nanoparticles. The two most common iron oxides, including magnetite and maghemite, are discussed in this study. For most of their applications, the magnetic behavior of iron oxide nanoparticles in a fluid is very important – especially, the high-gradient magnetic separation of the particles from a non-magnetic liquid medium such as blood in the human body. A two-dimensional model, which represents a slice through the center of a spherical particle in a fluid, is proposed in this study, and only the magnetic force and the drag force are taken into consideration. The magnetization of the particles is calculated by using the Langevin function, and the fluid drag force is calculated by using the Navier–Stokes equation. The trajectory function for this model is calculated and the trajectories are drawn for specific cases. </jats:p
From Hardware-in-the-Loop to Hybrid Process Simulation: An Ontology for the Implementation Phase of a Manufacturing System
Hybrid Computer-Human Supervision of Discrete Event Systems
This paper presents a framework for accommodating human intervention in a computer supervised discrete-event system. The basic mechanism for allowing such hybrid supervision by a computer and a human operator is by switching priorities between events controlled by each according to some specified schedule. To synthesize a computer supervisor under such conditions, a transformation that maps the problem to one that satisfies the model stipulations of the Supervisory Control Theory is presented. The aforementioned framework introduces a parameter that can be tuned to provide for different levels of co-operation between the human and computer supervisors. Several important properties of the resulting supervisors are presented
Hybrid Computer-Human Supervision of Discrete Event Systems
This paper presents a framework for accommodating human intervention in a computer supervised discrete-event system. The basic mechanism for allowing such hybrid supervision by a computer and a human operator is by switching priorities between events controlled by each according to some specified schedule. To synthesize a computer supervisor under such conditions, a transformation that maps the problem to one that satisfies the model stipulations of the Supervisory Control Theory is presented. The aforementioned framework introduces a parameter that can be tuned to provide for different levels of co-operation between the human and computer supervisors. Several important properties of the resulting supervisors are presented
Hybrid Computer-Human Supervision of Discrete Event Systems
This paper presents a framework for accommodating human intervention in a computer supervised discrete-event system. The basic mechanism for allowing such hybrid supervision by a computer and a human operator is by switching priorities between events controlled by each according to some specified schedule. To synthesize a computer supervisor under such conditions, a transformation that maps the problem to one that satisfies the model stipulations of the Supervisory Control Theory is presented. The aforementioned framework introduces a parameter that can be tuned to provide for different levels of co-operation between the human and computer supervisors. Several important properties of the resulting supervisors are presented
