2,243 research outputs found

    From Minority Games to real markets

    Full text link
    We address the question of market efficiency using the Minority Game (MG) model. First we show that removing unrealistic features of the MG leads to models which reproduce a scaling behavior close to what is observed in real markets. In particular we find that i) fat tails and clustered volatility arise at the phase transition point and that ii) the crossover to random walk behavior of prices is a finite size effect. This, on one hand, suggests that markets operate close to criticality, where the market is marginally efficient. On the other it allows one to measure the distance from criticality of real market, using cross-over times. The artificial market described by the MG is then studied as an ecosystem with different_species_ of traders. This clarifies the nature of the interaction and the particular role played by the various populations.Comment: 9 pages, 7 figures, to appear in Quantitative Financ

    Universality classes in directed sandpile models

    Full text link
    We perform large scale numerical simulations of a directed version of the two-state stochastic sandpile model. Numerical results show that this stochastic model defines a new universality class with respect to the Abelian directed sandpile. The physical origin of the different critical behavior has to be ascribed to the presence of multiple topplings in the stochastic model. These results provide new insights onto the long debated question of universality in abelian and stochastic sandpiles.Comment: 5 pages, RevTex, includes 9 EPS figures. Minor english corrections. One reference adde

    Hyperbolicity Measures "Democracy" in Real-World Networks

    Full text link
    We analyze the hyperbolicity of real-world networks, a geometric quantity that measures if a space is negatively curved. In our interpretation, a network with small hyperbolicity is "aristocratic", because it contains a small set of vertices involved in many shortest paths, so that few elements "connect" the systems, while a network with large hyperbolicity has a more "democratic" structure with a larger number of crucial elements. We prove mathematically the soundness of this interpretation, and we derive its consequences by analyzing a large dataset of real-world networks. We confirm and improve previous results on hyperbolicity, and we analyze them in the light of our interpretation. Moreover, we study (for the first time in our knowledge) the hyperbolicity of the neighborhood of a given vertex. This allows to define an "influence area" for the vertices in the graph. We show that the influence area of the highest degree vertex is small in what we define "local" networks, like most social or peer-to-peer networks. On the other hand, if the network is built in order to reach a "global" goal, as in metabolic networks or autonomous system networks, the influence area is much larger, and it can contain up to half the vertices in the graph. In conclusion, our newly introduced approach allows to distinguish the topology and the structure of various complex networks

    Optimizing interpolation of shoot density data from a Posidonia oceanica seagrass bed

    Get PDF
    A case study on the optimization of Posidonia oceanica density interpolation, using a data set from a large meadow at Porto Conte Bay (NW Sardinia, Italy), is presented. Ordinary point kriging, cokriging and a weighted average based on inverse square distance were used to interpolate density data measured in 36 sampling stations. The results obtained from different methods were then compared by means of a leave-one-out cross-validation procedure. The scale at which interpolation was carried out was defined on the basis of the Hausdorff dimension of the variogram. Optimizing spatial scale and data points search strategy allowed obtaining more accurate density estimates independently of the interpolation method

    Is Europe Evolving Toward an Integrated Research Area?

    Get PDF
    Efforts toward European research and development (R&D) integration have a long history, intensifying with the Fifth Framework Programme (FP) in 1998 (1–3) and the launch of the European Research Area (ERA) initiative at the Lisbon European Council in 2000. A key component of the European Union (EU) strategy for innovation and growth (4, 5), the ERA aims to overcome national borders through directed funding, increased mobility, and streamlined innovation policies

    Non conservative Abelian sandpile model with BTW toppling rule

    Full text link
    A non conservative Abelian sandpile model with BTW toppling rule introduced in [Tsuchiya and Katori, Phys. Rev. E {\bf 61}, 1183 (2000)] is studied. Using a scaling analysis of the different energy scales involved in the model and numerical simulations it is shown that this model belong to a universality class different from that of previous models considered in the literature.Comment: RevTex, 5 pages, 6 ps figs, Minor change

    Corrections to scaling in the forest-fire model

    Get PDF
    We present a systematic study of corrections to scaling in the self-organized critical forest-fire model. The analysis of the steady-state condition for the density of trees allows us to pinpoint the presence of these corrections, which take the form of subdominant exponents modifying the standard finite-size scaling form. Applying an extended version of the moment analysis technique, we find the scaling region of the model and compute the first non-trivial corrections to scaling.Comment: RevTeX, 7 pages, 7 eps figure

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    corecore