671 research outputs found
Full scale phosphoric acid fuel cell stack technology development
The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution
Strontium Isotope Composition and Trace Element Concentrations in Lake Huron and its Principal Tributaries
(print) ix, 109 p. : ill., maps ; 28 cm.Concentrations of the major cations: Na, K, Ca, Mg and Sr were determined for 64 samples of surface water from Lake Huron and for 17 of its major tributary rivers. For addition, isotopic compositions of strontium were measured for 30 samples of lake water and for 13 of the tributary rivers. Concentrations of dissolved iron and total phosphorus were determined for a small suite of lake and river water.
The data document important differences in the chemical composition of water discharged into Lake Huron by Lake Superior, Lake Michigan and tributary rivers. These differences are related to differences in the chemical and mineralogical
composition of the bedrock underlying the Great Lakes drainage basin.
The strontium contributed to Lake Huron by water draining the Canadian Shield along its northern shore is enriched in radiogenic Sr87. The average Sr87/ Sr86 ratio is 0. 718. The rivers draining sedimentary rocks of Michigan and southwestern Ontario contribute strontium whose isotope composition is similar to that in the modern oceans and has a Sr87/Sr86 ratio of 0.710.
A geochemical model is presented which attempts to represent the chemical composition of water in Lake Huron as a mixture of the different types of water discharged by different sources.Abstract -- Statement of the Significance and Applicability of the Results -- Table of Contents -- List of Tables -- List of Figures -- Acknowledgments -- Introduction -- Collection of Water Samples -- Analytical Methods -- Precision and Accuracy -- Presentation and Discussion of the Results -- Formulation of a Model for the Chemical Composition of Lake Huron -- The Isotope Composition of Strontium in the Great Lakes -- Summary and Conclusions -- References -- Geochemical Aspects of the Scioto and Olentangy Rivers, Columbus, Ohi
A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation.
Mice carrying the Tight skin (Tsk) mutation have thickened skin and visceral fibrosis resulting from an accumulation of extracellular matrix molecules. These and other connective tissue abnormalities have made Tskl + mice models for scleroderma, hereditary emphysema, and myocardial hypertrophy. Previously we localized Tsk to mouse chromosome 2 in a region syntenic with human chromosome 15. The microfibrillar glycoprotein gene, fibrillin 1 (FBN1), on human chromosome 15q, provided a candidate for the Tsk mutation. We now demonstrate that the Tsk chromosome harbors a 30- to 40-kb genomic duplication within the Fbn1 gene that results in a larger than normal in-frame Fbn1 transcript. These findings provide hypotheses to explain some of the phenotypic characteristics of Tskl + mice and the lethality of Tsk/Tsk embryos
Amelioration of bleomycin-induced lung fibrosis in hamsters by dietary supplementation with taurine and niacin: biochemical mechanisms.
Interstitial pulmonary fibrosis induced by intratracheal instillation of bleomycin (BL) involves an excess production of reactive oxygen species, unavailability of adequate levels of NAD and ATP to repair the injured pulmonary epithelium, and an overexuberant lung collagen reactivity followed by deposition of highly cross-linked mature collagen fibrils resistant to enzymatic degradation. In the present study, we have demonstrated that dietary supplementation with taurine and niacin offered almost complete protection against the lung fibrosis in a multidose BL hamster model. The mechanisms for the protective effect of taurine and niacin are multifaceted. These include the ability of taurine to scavenge HOCl and stabilize the biomembrane; niacin's ability to replenish the BL-induced depletion of NAD and ATP; and the combined effect of taurine and niacin to suppress all aspects of BL-induced increases in the lung collagen reactivity, a hallmark of interstitial pulmonary fibrosis. It was concluded from the data presented at this Conference that the combined treatment with taurine and niacin, which offers a multipronged approach, will have great therapeutic potential in the intervention of the development of chemically induced interstitial lung fibrosis in animals and humans
From climatological to small-scale applications: simulating water isotopologues with ICON-ART-Iso (version 2.3)
We present the new isotope-enabled model ICON-ART-Iso. The physics package of the global ICOsahedral Nonhydrostatic (ICON) modeling framework has been extended to simulate passive moisture tracers and the stable isotopologues HDO and H182O. The extension builds on the infrastructure provided by ICON-ART, which allows for high flexibility with respect to the number of related water tracers that are simulated. The physics of isotopologue fractionation follow the model COSMOiso. We first present a detailed description of the physics of fractionation that have been implemented in the model. The model is then evaluated on a range of temporal scales by comparing with measurements of precipitation and vapor.
A multi-annual simulation is compared to observations of the isotopologues in precipitation taken from the station network GNIP (Global Network for Isotopes in Precipitation). ICON-ART-Iso is able to simulate the main features of the seasonal cycles in δD and δ18O as observed at the GNIP stations. In a comparison with IASI satellite retrievals, the seasonal and daily cycles in the isotopologue content of vapor are examined for different regions in the free troposphere. On a small spatial and temporal scale, ICON-ART-Iso is used to simulate the period of two flights of the IAGOS-CARIBIC aircraft in September 2010, which sampled air in the tropopause region influenced by Hurricane Igor. The general features of this sample as well as those of all tropical data available from IAGOS-CARIBIC are captured by the model.
The study demonstrates that ICON-ART-Iso is a flexible tool to analyze the water cycle of ICON. It is capable of simulating tagged water as well as the isotopologues HDO and H182
A [4Fe-4S]-Fe(CO)(CN)-L-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly.
Biosynthesis of the [FeFe] hydrogenase active site (the 'H-cluster') requires the interplay of multiple proteins and small molecules. Among them, the radical S-adenosylmethionine enzyme HydG, a tyrosine lyase, has been proposed to generate a complex that contains an Fe(CO)2(CN) moiety that is eventually incorporated into the H-cluster. Here we describe the characterization of an intermediate in the HydG reaction: a [4Fe-4S][(Cys)Fe(CO)(CN)] species, 'Complex A', in which a CO, a CN- and a cysteine (Cys) molecule bind to the unique 'dangler' Fe site of the auxiliary [5Fe-4S] cluster of HydG. The identification of this intermediate-the first organometallic precursor to the H-cluster-validates the previously hypothesized HydG reaction cycle and provides a basis for elucidating the biosynthetic origin of other moieties of the H-cluster
Methodology for Detecting Trace Amounts of Microchimeric DNA from Peripheral Murine White Blood Cells by Real-Time PCR
Real-time PCR methodology can successfully quantitate microchimeric cell populations at a concentration of 100 microchimeric cells/100,000 host cells; however, it has not been successful in quantitating DNA from trace numbers of microchimeric white blood cells which we reported are present in murine peripheral blood at a concentration as low as 2/100,000 host cells. We report methodology using primers for a portion of the H2-k(b) murine histocompatibility sequence, specific for the C57BL/6J mouse. When these primers were used in the presence of 11,000 μM primer, a 20-fold increase in the median manufacturer’s recommended concentration, the assay could be optimized to detect 34 pg of C57BL/6J DNA in a background of 2.5 μg of carrier BALB/cJ DNA (1/100,000). These conditions resulted in a detection limit half as sensitive as that found when no carrier DNA was present
Variations of algal communities cause darkening of a Greenland glacier
We have assessed the microbial ecology on the surface of Mittivakkat glacier in SE-Greenland during the exceptional high melting season in July 2012 when the so far most extreme melting rate for the Greenland Ice Sheet has been recorded. By employing a complementary and multi-disciplinary field sampling and analytical approach, we quantified the dramatic changes in the different microbial surface habitats (green snow, red snow, biofilms, grey ice, cryoconite holes). The observed clear change in dominant algal community and their rapidly changing cryo-organic adaptation inventory was linked to the high melting rate. The changes in carbon and nutrient fluxes between different microbial pools (from snow to ice, cryoconite holes and glacial forefronts) revealed that snow and ice algae dominate the net primary production at the onset of melting, and that they have the potential to support the cryoconite hole communities as carbon and nutrient sources. A large proportion of algal cells is retained on the glacial surface and temporal and spatial changes in pigmentation contribute to the darkening of the snow and ice surfaces. This implies that the fast, melt-induced algal growth has a high albedo reduction potential, and this may lead to a positive feedback speeding up melting processes
- …
