1,132 research outputs found

    Generation of polarization entangled photon pairs by a single crystal interferometric source pumped by femtosecond laser pulses

    Get PDF
    Photon pairs, highly entangled in polarization have been generated under femtosecond laser pulse excitation by a type I crystal source, operating in a single arm interferometric scheme. The relevant effects of temporal walk-off existing in these conditions between the ordinary and extraordinary photons were experimentally investigated. By introducing a suitable temporal compensation between the two orthogonal polarization components highly entangled pulsed states were obtained

    Task-dependent Modulation of Cortical Excitability and Balance Control in Individuals with Post-concussion Syndrome

    Get PDF
    In most cases, symptoms resolve between 7-10 days post-concussion. However, in 10-15% of the concussed population, symptoms can remain unresolved for months to years following the head injury. The purpose of this thesis was two-fold, and was broken up into two studies, where the same individuals participated in both studies. The purpose of the first study was to quantify the differences in balance control between individuals with PCS (i.e., had been experiencing symptoms for \u3c30 days) and non-concussed individuals during a lower-limb reaching task. Participants completed a static balance assessment before and after a lower-limb reaching task, which incorporated a Go/No-Go paradigm. Results from this study revealed no differences in the static stability assessments, however, individuals with PCS demonstrated increased medial-lateral COP displacement as well as greater trunk pitch during the reaching task. Overall, the findings reveal persistent balance impairments in individuals with PCS, which may put this population at an increased risk of further injury. The purpose of the second study was to assess task-dependent modulation of cortical excitability prior to planned index finger abduction contractions comparing a non-concussed population to a population with PCS. The protocol in this study consisted of both single and paired-pulse transcranial magnetic stimulation (TMS) which was applied prior to the beginning of 3 different tasks (i.e., a rest condition with no plan to contract, a precision contraction, and a powerful contraction). In addition to the three tasks, participants also had to respond to a Go/No-Go cue. The results of this study revealed an increase in excitability prior to a precision contraction in both non-concussed and PCS groups. No differences in task-dependent modulation were found between the two groups with respect to intracortical facilitation and inhibition, however a negative correlation between number of symptoms reported (SCAT3 symptom evaluation) and intracortical facilitation was revealed. The increase in corticospinal excitability prior to a precision contraction was not explained by the two cortical mechanisms we assessed and may therefore be due to spinal modulation or a different cortical mechanism. Overall, based on the results from this thesis, it appears that individuals with PCS have balance impairments, which may be a result of an inability to maximally activate their postural muscles. Furthermore, it appears that those individuals who reported a higher number of symptoms had greater reductions in intracortical facilitation, likely reflecting the heterogeneity of this clinical group

    "All-versus-nothing" nonlocality test of quantum mechanics by two-photon hyperentanglement

    Full text link
    We report the experimental realization and the characterization of polarization and momentum hyperentangled two photon states, generated by a new parametric source of correlated photon pairs. By adoption of these states an "all versus nothing" test of quantum mechanics was performed. The two photon hyperentangled states are expected to find at an increasing rate a widespread application in state engineering and quantum information. PACS: 03.65.Ud, 03.67.Mn, 42.65. LmComment: Replaced with published versio

    Engineering a C-Phase quantum gate: optical design and experimental realization

    Full text link
    A two qubit quantum gate, namely the C-Phase, has been realized by exploiting the longitudinal momentum (i.e. the optical path) degree of freedom of a single photon. The experimental setup used to engineer this quantum gate represents an advanced version of the high stability closed-loop interferometric setup adopted to generate and characterize 2-photon 4-qubit Phased Dicke states. Some experimental results, dealing with the characterization of multipartite entanglement of the Phased Dicke states are also discussed in detail.Comment: accepted for publication on EPJ

    Specificity, Privacy, and Degeneracy in the CD4 T Cell Receptor Repertoire Following Immunization.

    Get PDF
    T cells recognize antigen using a large and diverse set of antigen-specific receptors created by a complex process of imprecise somatic cell gene rearrangements. In response to antigen-/receptor-binding-specific T cells then divide to form memory and effector populations. We apply high-throughput sequencing to investigate the global changes in T cell receptor sequences following immunization with ovalbumin (OVA) and adjuvant, to understand how adaptive immunity achieves specificity. Each immunized mouse contained a predominantly private but related set of expanded CDR3β sequences. We used machine learning to identify common patterns which distinguished repertoires from mice immunized with adjuvant with and without OVA. The CDR3β sequences were deconstructed into sets of overlapping contiguous amino acid triplets. The frequencies of these motifs were used to train the linear programming boosting (LPBoost) algorithm LPBoost to classify between TCR repertoires. LPBoost could distinguish between the two classes of repertoire with accuracies above 80%, using a small subset of triplet sequences present at defined positions along the CDR3. The results suggest a model in which such motifs confer degenerate antigen specificity in the context of a highly diverse and largely private set of T cell receptors

    A green chemistry-based classification model for the synthesis of silver nanoparticles

    Get PDF
    The assessment of the implementation of green chemistry principles in the syntheses of nanomaterials is a complex decision-making problem that necessitates the integration of several evaluation criteria. Multiple Criteria Decision Aiding (MCDA) provides support for such a challenge. One of its methods – Dominance-based Rough Set Approach (DRSA) – was used in this research to develop a model for the green chemistry-based classification of silver nanoparticle synthesis protocols into preference-ordered performance classes. DRSA allowed integration of knowledge from both peer-reviewed literature and experts (decision makers, DMs) in the field, resulting in a model composed of decision rules that are logical statements in the form: “if conditions, then decision”. The approach provides the basis for the design of rules for the greener synthesis of silver nanoparticles. Decision rules are supported by synthesis protocols that enforce the principles of green chemistry to various extents, resulting in robust recommendations for the development and assessment of silver nanoparticle synthesis that perform at one of five pre-determined levels. The DRSA-based approach is transparent and structured and can be easily updated. New perspectives and criteria could be added into the model if relevant data were available and domain-specific experts could collaborate through the MCDA procedure

    Tracking global changes induced in the CD4 T-cell receptor repertoire by immunization with a complex antigen using short stretches of CDR3 protein sequence.

    Get PDF
    The clonal theory of adaptive immunity proposes that immunological responses are encoded by increases in the frequency of lymphocytes carrying antigen-specific receptors. In this study, we measure the frequency of different T-cell receptors (TcR) in CD4 + T cell populations of mice immunized with a complex antigen, killed Mycobacterium tuberculosis, using high throughput parallel sequencing of the TcRβ chain. Our initial hypothesis that immunization would induce repertoire convergence proved to be incorrect, and therefore an alternative approach was developed that allows accurate stratification of TcR repertoires and provides novel insights into the nature of CD4 + T-cell receptor recognition
    corecore