1,955 research outputs found
The Pure State Space of Quantum Mechanics as Hermitian Symmetric Space
The pure state space of Quantum Mechanics is investigated as Hermitian
Symmetric Kaehler manifold. The classical principles of Quantum Mechanics
(Quantum Superposition Principle, Heisenberg Uncertainty Principle, Quantum
Probability Principle) and Spectral Theory of observables are discussed in this
non linear geometrical context.Comment: 18 pages, no figure
Multi-Component Dark Matter
We explore multi-component dark matter models where the dark sector consists
of multiple stable states with different mass scales, and dark forces coupling
these states further enrich the dynamics. The multi-component nature of the
dark matter naturally arises in supersymmetric models, where both R parity and
an additional symmetry, such as a , is preserved. We focus on a particular
model where the heavier component of dark matter carries lepton number and
annihilates mostly to leptons. The heavier component, which is essentially a
sterile neutrino, naturally explains the PAMELA, ATIC and synchrotron signals,
without an excess in antiprotons which typically mars other models of weak
scale dark matter. The lighter component, which may have a mass from a GeV to a
TeV, may explain the DAMA signal, and may be visible in low threshold runs of
CDMS and XENON, which search for light dark matter.Comment: 4 pages, no figures. v2: paper shortened to letter length; modified
dark matter spectru
Dark matter in natural supersymmetric extensions of the Standard Model
We explore the dark matter sector in extensions of the Minimal Supersymmetric
Standard Model (MSSM) that can provide a good fit to the PAMELA cosmic ray
positron excess, while at the same time addressing the little hierarchy problem
of the MSSM. Adding a singlet Higgs superfield, S, can account for the observed
positron excess, as recently discussed in the literature, but we point out that
it requires a fine-tuned choice for the parameters of the model. We find that
including an additional singlet allows both a reduction of the weak-scale
fine-tuning, and an interpretation of the cosmic ray observations in terms of
dark matter annihilations in the galactic halo. Our setup contains a light
axion, but does not require light CP-even scalars in the spectrum.Comment: 26 pages, 8 figures, references adde
Supersymmetric Extension of the Minimal Dark Matter Model
The minimal dark matter model is given a supersymmetric extension. A super
SU(2)L quintuplet is introduced with its fermionic neutral component still
being the dark matter, the dark matter particle mass is about 19.7 GeV. Mass
splitting among the quintplet due to supersymmetry particles is found to be
negligibly small compared to the electroweak corrections. Other properties of
this supersymmetry model are studied, it has the solutions to the PAMELA and
Fermi-LAT anomaly, the predictions in higher energies need further experimental
data to verify.Comment: 14 pages, 7 figures, accepted for publication in Chinese Physics C,
typos correcte
When CoGeNT met PAMELA
If the excess events from the CoGeNT experiment arise from elastic
scatterings of a light dark matter off the nuclei, crossing symmetry implies
non-vanishing annihilation cross-sections of the light dark matter into
hadronic final states inside the galactic halo, which we confront with the
anti-proton spectrum measured by the PAMELA collaboration. We consider two
types of effective interactions between the dark matter and the quarks: 1)
contact interactions from integrating out heavy particles and 2) long-range
interactions due to the electromagnetic properties of the dark matter. The lack
of excess in the anti-proton spectrum results in tensions for a scalar and, to
a less extent, a vector dark matter interacting with the quarks through the
Higgs portal.Comment: 15 pages, 3 figures. Updated references and included effects of solar
modulatio
Symmetryless Dark Matter
It is appealing to stabilize dark matter by the same discrete symmetry that
is used to explain the structure of quark and lepton mass matrices. However, to
generate the observed fermion mixing patterns, any flavor symmetry must
necessarily be broken, rendering dark matter unstable. We study singlet,
doublet and triplet SU(2) multiplets of both scalar and fermion dark matter
candidates and enumerate the conditions under which no d < 6 dark matter decay
operators are generated even in the case if the flavor symmetry is broken to
nothing. We show that the VEVs of flavon scalars transforming as higher
multiplets (e.g. triplets) of the flavor group must be at the electroweak
scale. The most economical way for that is to use SM Higgs boson(s) as flavons.
Such models can be tested by the LHC experiments. This scenario requires the
existence of additional Froggatt-Nielsen scalars that generate hierarchies in
Yukawa couplings. We study the conditions under which large and small flavor
breaking parameters can coexist without destabilizing the dark matter.Comment: 8 pages, no figure
Recommended from our members
Using Implicit Instructional Cues to Influence False Memory Induction
Previous research has shown that explicit cues specific to the encoding process (endogenous) or characteristic of the stimuli themselves (exogenous) can be used to direct a reader’s attentional resources towards either relational or item-specific information. By directing attention to relational information (and therefore away from item-specific information) the rate of false memory induction can be increased. The purpose of the current study was to investigate if a similar effect would be found by manipulating implicitly endogenous cues. An instructional manipulation was used to influence the perceptual action participants performed on word stimuli during the encoding of DRM list words. Results demonstrated that the instructional conditions that encouraged faster processing also led to an increased rate of false memory induction for semantically related words, supporting the hypothesis that attention was directed towards relational information. This finding supports the impoverished relational processing account of false memory induction. This supports the idea that implicitly endogenous cues, exogenous cues (like font) or explicitly endogenous cues (like training) can direct attentional resources during encoding
Can multistate dark matter annihilation explain the high-energy cosmic ray lepton anomalies?
Multistate dark matter (DM) models with small mass splittings and couplings
to light hidden sector bosons have been proposed as an explanation for the
PAMELA/Fermi/H.E.S.S. high-energy lepton excesses. We investigate this proposal
over a wide range of DM density profiles, in the framework of concrete models
with doublet or triplet dark matter and a hidden SU(2) gauge sector that mixes
with standard model hypercharge. The gauge coupling is bounded from below by
the DM relic density, and the Sommerfeld enhancement factor is explicitly
computable for given values of the DM and gauge boson masses M, mu and the
(largest) dark matter mass splitting delta M_{12}. Sommerfeld enhancement is
stronger at the galactic center than near the Sun because of the radial
dependence of the DM velocity profile, which strengthens the inverse Compton
(IC) gamma ray constraints relative to usual assumptions. We find that the
PAMELA/Fermi/H.E.S.S. lepton excesses are marginally compatible with the model
predictions, and with CMB and Fermi gamma ray constraints, for M ~ 800 GeV, mu
~ 200 MeV, and a dark matter profile with noncuspy Einasto parameters alpha >
0.20, r_s ~ 30 kpc. We also find that the annihilating DM must provide only a
subdominant (< 0.4) component of the total DM mass density, since otherwise the
boost factor due to Sommerfeld enhancement is too large.Comment: 20 pages, 12 figures; v2: Corrected branching ratio for ground state
DM annihilations into leptons, leading to boost factors that are larger than
allowed. Added explicit results for doublet DM model. Some conclusions
changed; main conclusion of tension between inverse Compton constraints and
N-body simulations of halo profiles is unchange
Positrons in Cosmic Rays from Dark Matter Annihilations for Uplifted Higgs Regions in MSSM
We point out that there are regions in the MSSM parameter space which
successfully provide a dark matter (DM) annihilation explanation for observed
positron excess (e.g. PAMELA), while still remaining in agreement with all
other data sets. Such regions (e.g. the uplifted Higgs region) can realize an
enhanced neutralino DM annihilation dominantly into leptons via a Breit-Wigner
resonance through the CP-odd Higgs channel. Such regions can give the proper
thermal relic DM abundance, and the DM annihilation products are compatible
with current antiproton and gamma ray observations. This scenario can succeed
without introducing any additional degrees of freedom beyond those already in
the MSSM.Comment: 11 pages, 9 figure
Direct Detection of Electroweak-Interacting Dark Matter
Assuming that the lightest neutral component in an SU(2)L gauge multiplet is
the main ingredient of dark matter in the universe, we calculate the elastic
scattering cross section of the dark matter with nucleon, which is an important
quantity for the direct detection experiments. When the dark matter is a real
scalar or a Majorana fermion which has only electroweak gauge interactions, the
scattering with quarks and gluon are induced through one- and two-loop quantum
processes, respectively, and both of them give rise to comparable contributions
to the elastic scattering cross section. We evaluate all of the contributions
at the leading order and find that there is an accidental cancellation among
them. As a result, the spin-independent cross section is found to be
O(10^-(46-48)) cm^2, which is far below the current experimental bounds.Comment: 19 pages, 7 figures, published versio
- …
