29,204 research outputs found
Steroids in pediatric eosinophilic esophagitis
Swallowed fluticasone and oral viscous budesonide are effective first-line therapies for eosinophilic esophagitis in children. Side effects are minimal without evidence of Cushing syndrome, as seen in treatment with systemic corticosteroids. New studies on alternative delivery systems and different corticosteroids (eg, ciclesonide) are encouraging. As knowledge of corticosteroids in eosinophilic esophagitis expands, newer questions continue to arise concerning dose, delivery, and choice of corticosteroids; long-term adverse effects; and maintenance therapies
Dephasing-assisted transport in linear triple quantum dots
Environmental noise usually hinders the efficiency of charge transport
through coherent quantum systems; an exception is dephasing-assisted transport
(DAT). We show that linear triple quantum dots in a transport configuration and
subjected to pure dephasing exhibit DAT if the coupling to the drain reservoir
exceeds a threshold. DAT occurs for arbitrarily weak dephasing and the
enhancement can be directly controlled by the coupling to the drain. Moreover,
for specific settings, the enhanced current is accompanied by a reduction in
relative shot noise. We identify the quantum Zeno effect and long-distance
tunnelling as underlying dynamical processes involved in dephasing-assisted and
-suppressed transport. Our analytical results are obtained by using the density
matrix formalism and the characteristic polynomial approach to full counting
statistics.Comment: To appear in New Journal of Physics, 20 pages, 5 figure
Holographic model for heavy vector meson masses
The experimentally observed spectra of heavy vector meson radial excitations
show a dependence on two different energy parameters. One is associated with
the quark mass and the other with the binding energy levels of the quark
anti-quark pair. The first is present in the large mass of the first state
while the other corresponds to the small mass splittings between radial
excitations. In this article we show how to reproduce such a behavior with
reasonable precision using a holographic model. In the dual picture, the large
energy scale shows up from a bulk mass and the small scale comes from the
position of anti-de Sitter (AdS) space where field correlators are calculated.
The model determines the masses of four observed S-wave states of charmonium
and six S-wave states of bottomonium with , 6.1 % rms error. In consistency
with the physical picture, the large energy parameter is flavor dependent,
while the small parameter, associated with quark anti-quark interaction is the
same for charmonium and bottomonium states.Comment: In V5 we just added some clarifying explanations about the model. 5
tables, no figure. Version published in Europhysics Letter
Holographic Picture of Heavy Vector Meson Melting
The fraction of heavy vector mesons produced in a heavy ion collision, as
compared to a proton proton collision, serves as an important indication of the
formation of a thermal medium, the quark gluon plasma. This sort of analysis
strongly depends on understanding the thermal effects of a medium like the
plasma on the states of heavy mesons. In particular, it is crucial to know the
temperature ranges where they undergo a thermal dissociation, or melting.
AdS/QCD models are know to provide an important tool for the calculation of
hadronic masses, but in general are not consistent with the observation that
decay constants of heavy vector mesons decrease with excitation level. It has
recently been shown that this problem can be overcome using a soft wall
background and introducing an extra energy parameter, through the calculation
of correlation functions at a finite position of anti-de Sitter space. This
approach leads to the evaluation of masses and decay constants of S wave
quarkonium states with just one flavor dependent and one flavor independent
parameters. Here we extend this more realistic model to finite temperatures and
analyse the thermal behavior of the states and of bottomonium
and charmonium. The corresponding spectral function exhibits a consistent
picture for the melting of the states where, for each flavor, the higher
excitations melt at lower temperatures. We estimate for these six states, the
energy ranges in which the heavy vector mesons undergo a transition from a well
defined peak in the spectral function to complete melting in the thermal
medium. A very clear distinction between the heavy flavors emerges, with
bottomonium state surviving deconfinemet transition at
temperatures much larger than the critical deconfinement temperature of the
medium.Comment: 20 pages, 7 figure
- …
