185 research outputs found

    Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj

    Get PDF
    The Type~Ia supernova (SN~Ia) 2016coj in NGC 4125 (redshift z=0.004523z=0.004523) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before BB-band maximum). Our first detection (pre-discovery) is merely 0.6±0.50.6\pm0.5 day after the FFLT, making SN 2016coj one of the earliest known detections of a SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN Ia, but with a high velocity of \ion{Si}{2} λ\lambda6355 (12,600\sim 12,600\,\kms\ around peak brightness). The \ion{Si}{2} λ\lambda6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity (MB18.9±0.2M_B \approx -18.9 \pm 0.2 mag), and it reaches a BB-band maximum \about16.0~d after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na~I~D absorption lines in our low- and high-resolution spectra. The spectropolarimetric data exhibit weak polarization in the continuum, but the \ion{Si}{2} line polarization is quite strong (0.9%±0.1%\sim 0.9\% \pm 0.1\%) at peak brightness.Comment: Submitte

    Gathering opinion leader data for a tailored implementation intervention in secondary healthcare: a randomised trial

    Get PDF
    Background: Health professionals’ behaviour is a key component in compliance with evidence-based recommendations. Opinion leaders are an oft-used method of influencing such behaviours in implementation studies, but reliably and cost effectively identifying them is not straightforward. Survey and questionnaire based data collection methods have potential and carefully chosen items can – in theory – both aid identification of opinion leaders and help in the design of an implementation strategy itself. This study compares two methods of identifying opinion leaders for behaviour-change interventions. Methods: Healthcare professionals working in a single UK mental health NHS Foundation Trust were randomly allocated to one of two questionnaires. The first, slightly longer questionnaire, asked for multiple nominations of opinion leaders, with specific information about the nature of the relationship with each nominee. The second, shorter version, asked simply for a list of named “champions” but no more additional information. We compared, using Chi Square statistics, both the questionnaire response rates and the number of health professionals likely to be influenced by the opinion leaders (i.e. the “coverage” rates) for both questionnaire conditions. Results: Both questionnaire versions had low response rates: only 15% of health professionals named colleagues in the longer questionnaire and 13% in the shorter version. The opinion leaders identified by both methods had a low number of contacts (range of coverage, 2–6 each). There were no significant differences in response rates or coverage between the two identification methods. Conclusions: The low response and population coverage rates for both questionnaire versions suggest that alternative methods of identifying opinion leaders for implementation studies may be more effective. Future research should seek to identify and evaluate alternative, non-questionnaire based, methods of identifying opinion leaders in order to maximise their potential in organisational behaviour change interventions

    Detonation of hydrogen-oxygen at low temperature and high pressure

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77397/1/AIAA-2246-726.pd

    Panoramic SETI: on-sky results from prototype telescopes and instrumental design

    Get PDF
    The Panoramic SETI (Search for Extraterrestrial Intelligence) experiment (PANOSETI) aims to detect and quantify optical transients from nanosecond to second precision over a large field-of-view (∼4,450 square-degrees). To meet these challenging timing and wide-field requirements, the PANOSETI experiment will use two assemblies of ∼45 telescopes to reject spurious signals by coincidence detection, each one comprising custom-made fast photon-counting hardware combined with (f/1.32) focusing optics. Preliminary on-sky results from pairs of PANOSETI prototype telescopes (100 sq.deg.) are presented in terms of instrument performance and false alarm rates. We found that a separation of >1 km between telescopes surveying the same field-of-view significantly reduces the number of false positives due to nearby sources (e.g., Cherenkov showers) in comparison to a side- by-side configuration of telescopes. Design considerations on the all-sky PANOSETI instrument and expected field-of-views are reported

    TrpA1 Regulates Thermal Nociception in Drosophila

    Get PDF
    Pain is a significant medical concern and represents a major unmet clinical need. The ability to perceive and react to tissue-damaging stimuli is essential in order to maintain bodily integrity in the face of environmental danger. To prevent damage the systems that detect noxious stimuli are therefore under strict evolutionary pressure. We developed a high-throughput behavioral method to identify genes contributing to thermal nociception in the fruit fly and have reported a large-scale screen that identified the Ca2+ channel straightjacket (stj) as a conserved regulator of thermal nociception. Here we present the minimal anatomical and neuronal requirements for Drosophila to avoid noxious heat in our novel behavioral paradigm. Bioinformatics analysis of our whole genome data set revealed 23 genes implicated in Ca2+ signaling that are required for noxious heat avoidance. One of these genes, the conserved thermoreceptor TrpA1, was confirmed as a bona fide “pain” gene in both adult and larval fly nociception paradigms. The nociceptive function of TrpA1 required expression within the Drosophila nervous system, specifically within nociceptive multi-dendritic (MD) sensory neurons. Therefore, our analysis identifies the channel TRPA1 as a conserved regulator of nociception

    Evolution of Female Preference for Younger Males

    Get PDF
    Previous theoretical work has suggested that females should prefer to mate with older males, as older males should have higher fitness than the average fitness of the cohort into which they were born. However, studies in humans and model organisms have shown that as males age, they accumulate deleterious mutations in their germ-line at an ever-increasing rate, thereby reducing the quality of genes passed on to the next generation. Thus, older males may produce relatively poor-quality offspring. To better understand how male age influences female mate preference and offspring quality, we used a genetic algorithm model to study the effect of age-related increases in male genetic load on female mate preference. When we incorporate age-related increases in mutation load in males into our model, we find that females evolve a preference for younger males. Females in this model could determine a male's age, but not his inherited genotype nor his mutation load. Nevertheless, females evolved age-preferences that led them to mate with males that had low mutation loads, but showed no preference for males with respect to their somatic quality. These results suggest that germ-line quality, rather than somatic quality, should be the focus of female preference in good genes models

    The SDSS-V Local Volume Mapper (LVM): Scientific Motivation and Project Overview

    Full text link
    We present the Sloan Digital Sky Survey V (SDSS-V) Local Volume Mapper (LVM). The LVM is an integral-field spectroscopic survey of the Milky Way, Magellanic Clouds, and of a sample of local volume galaxies, connecting resolved pc-scale individual sources of feedback to kpc-scale ionized interstellar medium (ISM) properties. The 4-year survey covers the southern Milky Way disk at spatial resolutions of 0.05 to 1 pc, the Magellanic Clouds at 10 pc resolution, and nearby large galaxies at larger scales totaling >4300>4300 square degrees of sky, and more than 55M spectra. It utilizes a new facility of alt-alt mounted siderostats feeding 16 cm refractive telescopes, lenslet-coupled fiber-optics, and spectrographs covering 3600-9800A at R ~ 4000. The ultra-wide field IFU has a diameter of 0.5 degrees with 1801 hexagonally packed fibers of 35.3 arcsec apertures. The siderostats allow for a completely stationary fiber system, avoiding instability of the line spread function seen in traditional fiber feeds. Scientifically, LVM resolves the regions where energy, momentum, and chemical elements are injected into the ISM at the scale of gas clouds, while simultaneously charting where energy is being dissipated (via cooling, shocks, turbulence, bulk flows, etc.) to global scales. This combined local and global view enables us to constrain physical processes regulating how stellar feedback operates and couples to galactic kinematics and disk-scale structures, such as the bar and spiral arms, as well as gas in- and out-flows.Comment: 29 pages, 12 figures, accepted for publication in The Astronomical Journa

    The Lick AGN Monitoring Project 2016: Dynamical Modeling of Velocity-Resolved H\b{eta} Lags in Luminous Seyfert Galaxies

    Full text link
    We have modeled the velocity-resolved reverberation response of the H\b{eta} broad emission line in nine Seyfert 1 galaxies from the Lick Active Galactic Nucleus (AGN) Monitioring Project 2016 sample, drawing inferences on the geometry and structure of the low-ionization broad-line region (BLR) and the mass of the central supermassive black hole. Overall, we find that the H\b{eta} BLR is generally a thick disk viewed at low to moderate inclination angles. We combine our sample with prior studies and investigate line-profile shape dependence, such as log10(FWHM/{\sigma}), on BLR structure and kinematics and search for any BLR luminosity-dependent trends. We find marginal evidence for an anticorrelation between the profile shape of the broad H\b{eta} emission line and the Eddington ratio, when using the root-mean-square spectrum. However, we do not find any luminosity-dependent trends, and conclude that AGNs have diverse BLR structure and kinematics, consistent with the hypothesis of transient AGN/BLR conditions rather than systematic trends

    Nociceptors: a phylogenetic view

    Get PDF
    The ability to react to environmental change is crucial for the survival of an organism and an essential prerequisite is the capacity to detect and respond to aversive stimuli. The importance of having an inbuilt “detect and protect” system is illustrated by the fact that most animals have dedicated sensory afferents which respond to noxious stimuli called nociceptors. Should injury occur there is often sensitization, whereby increased nociceptor sensitivity and/or plasticity of nociceptor-related neural circuits acts as a protection mechanism for the afflicted body part. Studying nociception and nociceptors in different model organisms has demonstrated that there are similarities from invertebrates right through to humans. The development of technology to genetically manipulate organisms, especially mice, has led to an understanding of some of the key molecular players in nociceptor function. This review will focus on what is known about nociceptors throughout the Animalia kingdom and what similarities exist across phyla; especially at the molecular level of ion channels
    corecore