209 research outputs found

    The pseudomorphic to bulk fcc phase transition of thin Ni films on Pd(100)

    Full text link
    We have measured the transformation of pseudomorphic Ni films on Pd(100) into their bulk fcc phase as a function of the film thickness. We made use of x-ray diffraction and x-ray induced photoemission to study the evolution of the Ni film and its interface with the substrate. The growth of a pseudomorphic film with tetragonally strained face centered symmetry (fct) has been observed by out-of-plane x-ray diffraction up to a maximum thickness of 10 Ni layers (two of them intermixed with the substrate), where a new fcc bulk-like phase is formed. After the formation of the bulk-like Ni domains, we observed the pseudomorphic fct domains to disappear preserving the number of layers and their spacing. The phase transition thus proceeds via lateral growth of the bulk-like phase within the pseudomorphic one, i.e. the bulk-like fcc domains penetrate down to the substrate when formed. This large depth of the walls separating the domains of different phases is also indicated by the strong increase of the intermixing at the substrate-film interface, which starts at the onset of the transition and continues at even larger thickness. The bulk-like fcc phase is also slightly strained; its relaxation towards the orthomorphic lattice structure proceeds slowly with the film thickness, being not yet completed at the maximum thickness presently studied of 30 Angstrom (i.e. about 17 layers).Comment: 8 pages, 7 figure

    Surfactant-like Effect and Dissolution of Ultrathin Fe Films on Ag(001)

    Full text link
    The phase immiscibility and the excellent matching between Ag(001) and Fe(001) unit cells (mismatch 0.8 %) make Fe/Ag growth attractive in the field of low dimensionality magnetic systems. Intermixing could be drastically limited at deposition temperatures as low as 140-150 K. The film structural evolution induced by post-growth annealing presents many interesting aspects involving activated atomic exchange processes and affecting magnetic properties. Previous experiments, of He and low energy ion scattering on films deposited at 150 K, indicated the formation of a segregated Ag layer upon annealing at 550 K. Higher temperatures led to the embedding of Fe into the Ag matrix. In those experiments, information on sub-surface layers was attained by techniques mainly sensitive to the topmost layer. Here, systematic PED measurements, providing chemical selectivity and structural information for a depth of several layers, have been accompanied with a few XRD rod scans, yielding a better sensitivity to the buried interface and to the film long range order. The results of this paper allow a comparison with recent models enlightening the dissolution paths of an ultra thin metal film into a different metal, when both subsurface migration of the deposit and phase separation between substrate and deposit are favoured. The occurrence of a surfactant-like stage, in which a single layer of Ag covers the Fe film is demonstrated for films of 4-6 ML heated at 500-550 K. Evidence of a stage characterized by the formation of two Ag capping layers is also reported. As the annealing temperature was increased beyond 700 K, the surface layers closely resembled the structure of bare Ag(001) with the residual presence of subsurface Fe aggregates.Comment: 4 pages, 3 figure

    Decacyclene Trianhydride at Functional Interfaces: An Ideal Electron Acceptor Material for Organic Electronics

    Get PDF
    We report the interface energetics of decacyclene trianhydride (DTA) monolayers on top of two distinct model surfaces, namely, Au(111) and Ag(111). On the latter, combined valence band photoemission and X-ray absorption measurements that access the occupied and unoccupied molecular orbitals, respectively, reveal that electron transfer from substrate to surface sets in. Density functional theory calculations confirm our experimental findings and provide an understanding not only of the photoemission and X-ray absorption spectral features of this promising organic semiconductor but also of the fingerprints associated with the interface charge transfer

    Inversed linear dichroism in F <em>K</em>-edge NEXAFS spectra of fluorinated planar aromatic molecules

    Get PDF
    et al.The symmetry and energy distribution of unoccupied molecular orbitals is addressed in this work by means of NEXAFS and density functional theory calculations for planar, fluorinated organic semiconductors (perfluorinated copper phthalocyanines and perfluoropentacene). We demonstrate how molecular orbitals with significant density of states on the fluorine atoms show different symmetry from those mainly located on C and N atoms. As a result, the angle-dependent linear dichroism in NEXAFS F K-edge spectra is inversed with respect to that in the C and N K-edges. In addition, the significant overlap in energy of π * and σ * orbitals throughout the F K-edge spectrum hampers its use for analysis of molecular orientations from angle-dependent NEXAFS measurements. © 2012 American Physical Society.J.E.O. and A.R. acknowledge funding from the Spanish MEC through Grants No. FIS2011-65702-C02-01, No. MAT2010-21156-C03-01, and No. PIB2010US-00652, and from the Basque Government through Grants No. IT-257-07 and No. IT-319-07. A.R. additionally acknowledges that financial support was provided by ACI-Promociona Grant No. ACI2009-1036 and the European Research Council Advanced Grant DYNamo (ERC-2010-AdG, Proposal No. 267374). A.S. acknowledges the support of the Research Funds of the University of Helsinki and the Academy of Finland through Contract No. 1127462, Centers of Excellence Program, and the National Graduate School in Materials Physics. J.M.G.L. acknowledges support from The Lundbeck Foundation’s Center for Atomic-Scale Materials Design and the Danish Center for Scientific Computing.Peer Reviewe

    Large-Scale Atomistic Simulations of Environmental Effects on the Formation and Properties of Molecular Junctions

    Full text link
    Using an updated simulation tool, we examine molecular junctions comprised of benzene-1,4-dithiolate bonded between gold nanotips, focusing on the importance of environmental factors and inter-electrode distance on the formation and structure of bridged molecules. We investigate the complex relationship between monolayer density and tip separation, finding that the formation of multi-molecule junctions is favored at low monolayer density, while single-molecule junctions are favored at high density. We demonstrate that tip geometry and monolayer interactions, two factors that are often neglected in simulation, affect the bonding geometry and tilt angle of bridged molecules. We further show that the structures of bridged molecules at 298 and 77 K are similar.Comment: To appear in ACS Nano, 30 pages, 5 figure

    Length-Independent Charge Transport in Chimeric Molecular Wires

    Get PDF
    Advanced molecular electronic components remain vital for the next generation of miniaturized integrated circuits. Thus, much research effort has been devoted to the discovery of lossless molecular wires, for which the charge transport rate or conductivity is not attenuated with length in the tunneling regime. Herein, we report the synthesis and electrochemical interrogation of DNA-like molecular wires. We determine that the rate of electron transfer through these constructs is independent of their length and propose a plausible mechanism to explain our findings. The reported approach holds relevance for the development of high-performance molecular electronic components and the fundamental study of charge transport phenomena in organic semiconductors

    Deciphering Electron Interplay at the Fullerene/Sputtered TiOxInterface: A Barrier-Free Electron Extraction for Organic Solar Cells

    Get PDF
    Organic photovoltaics (OPVs) technology now offers power conversion efficiency (PCE) of over 18% and is one of the main emerging photovoltaic technologies. In such devices, titanium dioxide (TiOx) has been vastly used as an electron extraction layer, typically showing unwanted charge-extraction barriers and the need for light-soaking. In the present work, using advanced photoemission spectroscopies, we investigate the electronic interplay at the interface between low-temperature-sputtered TiOx and C70 acceptor fullerene molecules. We show that defect states in the band gap of TiOx are quenched by C70 while an interfacial state appears. This new interfacial state is expected to support the favorable energy band alignment observed, showing a perfect match of transport levels, and thus barrier-free extraction of charges, making low-temperature-sputtered TiOx a good candidate for the next generation of organic solar cells

    Controlling the stereochemistry and regularity of butanethiol self-assembled monolayers on Au(111)

    Full text link
    © 2014 American Chemical Society. The rich stereochemistry of the self-assembled monolayers (SAMs) of four butanethiols on Au(111) is described, the SAMs containing up to 12 individual C, S, or Au chiral centers per surface unit cell. This is facilitated by synthesis of enantiomerically pure 2-butanethiol (the smallest unsubstituted chiral alkanethiol), followed by in situ scanning tunneling microscopy (STM) imaging combined with density functional theory molecular dynamics STM image simulations. Even though butanethiol SAMs manifest strong headgroup interactions, steric interactions are shown to dominate SAM structure and chirality. Indeed, steric interactions are shown to dictate the nature of the headgroup itself, whether it takes on the adatom-bound motif RS•Au(0)S•R or involves direct binding of RS• to face-centered-cubic or hexagonal-close-packed sites. Binding as RS• produces large, organizationally chiral domains even when R is achiral, while adatom binding leads to rectangular plane groups that suppress long-range expression of chirality. Binding as RS• also inhibits the pitting intrinsically associated with adatom binding, desirably producing more regularly structured SAMs

    Picosecond timescale tracking of pentacene triplet excitons with chemical sensitivity

    Get PDF
    Singlet fission is a photophysical process in which an optically excited singlet exciton is converted into two triplet excitons. Singlet fission sensitized solar cells are expected to display a greatly enhanced power conversion efficiency compared to conventional singlejunction cells, but the efficient design of such devices relies on the selection of materials capable of harvesting triplets generated in the fission chromophore. To this aim, the possibility of measuring triplet exciton ynamics with chemical selectivity paves the way for the rational design of complex heterojunctions, with optimized triplet conversion. Here we exploit the chemical sensitivity of X-ray absorption spectroscopy to track triplet exciton dynamics at the picosecond timescale in multilayer films of pentacene, the archetypal singlet fission material. We experimentally identify the signature of the triplet exciton in the Carbon K-edge absorption spectrum and measure its lifetime of about 300 ps. Our results are supported by state-of-the-art ab initio calculations

    Mechanistic insights into on-surface reactions from isothermal temperature-programmed X-ray photoelectron spectroscopy

    Get PDF
    On-surface synthesis often proceeds under kinetic control due to the irreversibility of key reaction steps, rendering kinetic studies pivotal. The accurate quantification of reaction rates also bears potential for unveiling reaction mechanisms. Temperature-Programmed X-ray Photoelectron Spectroscopy (TP-XPS) has emerged as an analytical tool for kinetic studies with splendid chemical and sufficient temporal resolution. Here, we demonstrate that the common linear temperature ramps lead to fitting ambiguities. Moreover, pinpointing the reaction order remains intricate, although this key parameter entails information on atomistic mechanisms. Yet, TP-XPS experiments with a stepped temperature profile comprised of isothermal segments facilitate the direct quantification of rate constants from fitting time courses. Thereby, rate constants are obtained for a series of temperatures, which allows independent extraction of both activation energies and pre-exponentials from Arrhenius plots. By using two analogous doubly versus triply brominated aromatic model compounds, we found that their debromination on Ag(111) is best modeled by second-order kinetics and thus proceeds via the involvement of a second, non-obvious reactant. Accordingly, we propose that debromination is activated by surface supplied Ag adatoms. This hypothesis is supported by Density Functional Theory (DFT) calculations. We foresee auspicious prospects for this TP-XPS variant for further exploring the kinetics and mechanisms of on-surface reactions
    corecore