856 research outputs found

    Microbiota and chronic inflammatory arthritis. an interwoven link

    Get PDF
    Background: Only recently, the scientific community gained insights on the importance of the intestinal resident flora for the host's health and disease. Gut microbiota in fact plays a crucial role in modulating innate and acquired immune responses and thus interferes with the fragile balance inflammation versus tolerance. Main body: Correlations between gut bacteria composition and the severity of inflammation have been studied in inflammatory bowel diseases. More recently similar alterations in the gut microbiota have been reported in patients with spondyloarthritis, whereas in rheumatoid arthritis an accumulating body of evidence evokes a pathogenic role for the altered oral microbiota in disease development and course. In the context of dysbiosis it is also important to remember that different environmental factors like stress, smoke and dietary components can induce strong bacterial changes and consequent exposure of the intestinal epithelium to a variety of different metabolites, many of which have an unknown function. In this perspective, and in complex disorders like autoimmune diseases, not only the genetic makeup, sex and immunologic context of the individual but also the structure of his microbial community should be taken into account. Conclusions: Here we provide a review of the role of the microbiota in the onset, severity and progression of chronic inflammatory arthritis as well as its impact on the therapeutic management of these patients. Furthermore we point-out the complex interwoven link between gut-joint-brain and immune system by reviewing the most recent data on the literature on the importance of environmental factors such as diet, smoke and stress

    Infectious agents and inflammation. The role of microbiota in autoimmune arthritis

    Get PDF
    In higher vertebrates, mucosal sites at the border between the internal and external environments, directly interact with bacteria, viruses, and fungi. Through co-evolution, hosts developed mechanisms of tolerance or ignorance toward some infectious agents, because hosts established "gain of function" interactions with symbiotic bacteria. Indeed, some bacteria assist hosts in different functions, among which are digestion of complex carbohydrates, and absorption and supply of vitamins. There is no doubt that microbiota modulate innate and acquired immune responses starting at birth. However, variations in quality and quantity of bacterial species interfere with the equilibrium between inflammation and tolerance. In fact, correlations between gut bacteria composition and the severity of inflammation were first described for inflammatory bowel diseases and later extended to other pathologies. The genetic background, environmental factors (e.g., stress or smoking), and diet can induce strong changes in the resident bacteria which can expose the intestinal epithelium to a variety of different metabolites, many of which have unknown functions and consequences. In addition, alterations in gut permeability may allow pathogens entry, thereby triggering infection and/or chronic inflammation. In this context, a local event occurring at a mucosal site may be the triggering cause of an autoimmune reaction that eventually involves distant sites or organs. Recently, several studies attributed a pathogenic role to altered oral microbiota in rheumatoid arthritis (RA) and to gut dysbiosis in spondyloarthritis (SpA). There is also growing evidence that different drugs, such as antibiotics and immunosuppressants, can influence and be influenced by the diversity and composition of microbiota in RA and SpA patients. Hence, in complex disorders such RA and SpA, not only the genetic background, gender, and immunologic context of the individual are relevant, but also the history of infections and the structure of the microbial community at mucosal sites should be considered. Here the role of the microbiota and infections in the initiation and progression of chronic arthritis is discussed, as well as how these factors can influence a patient's response to synthetic and biologic immunosuppressive therapy

    Rilievi e indagini diagnostiche non distruttive per l’individuazione delle cripte - La Cattedrale di Ragusa

    Get PDF
    I diversi operatori, che si occupano di Beni Storici e Culturali, si avvalgono sempre più spesso delle soluzioni tecnologiche avanzate offerte dalla moderna Geomatica, facendo ricorso ad integrazioni delle sue discipline, per meglio studiare, indagare e monitorare un bene di interesse storico. Oggi si tentano nuove integrazioni con altre discipline che, tradizionalmente, non riguardano il campo del rilievo propriamente detto. Questo è, ad esempio, il caso dello studio condotto sulla Cattedrale di San Giovanni a Ragusa, nel quale si è partiti dal rilievo laser scanning di una porzione della chiesa e del suo pregiatissimo pavimento, sotto il quale secondo uno schizzo dei primi anni del XIX secolo (Fig. 1) dovrebbero trovarsi delle sepolture, per poi proseguire lo studio con l’ausilio del Georadar, strumento utilizzato tradizionalmente da geofisici e geologi per indagare il terreno. Ciò è stato fatto al fine di verificare l’effettiva presenza di strutture ipogee senza però agire con indagini invasive. Il risultato dell’elaborazione dei dati georadar, trasformato in una ricostruzione tridimensionale del sottopavimento, è stato affiancato alla ricostruzione tridimensionale della chiesa, realizzata dall’elaborazione dei dati del rilievo laser scanning. Tale integrazione ha permesso di confermare la presenza di strutture ipogee e di capire in che relazione sono queste ultime con gli avvallamenti presenti nel pavimento della chiesa. Del modello tridimensionale completo si è, infine, realizzata una versione navigabile (VRML), capace di offrire una visualizzazione e un’interazione anche ad utenti privi di conoscenze informatiche approfondite

    Changes in the folding landscape of the WW domain provide a molecular mechanism for an inherited genetic syndrome

    Get PDF
    WW domains are small domains present in many human proteins with a wide array of functions and acting through the recognition of proline-rich sequences. The WW domain belonging to polyglutamine tract-binding protein 1 (PQBP1) is of particular interest due to its direct involvement in several X chromosome-linked intellectual disabilities, including Golabi-Ito-Hall (GIH) syndrome, where a single point mutation (Y65C) correlates with the development of the disease. The mutant cannot bind to its natural ligand WBP11, which regulates mRNA processing. In this work we use high-field high-resolution NMR and enhanced sampling molecular dynamics simulations to gain insight into the molecular causes the disease. We find that the wild type protein is partially unfolded exchanging among multiple beta-strand-like conformations in solution. The Y65C mutation further destabilizes the residual fold and primes the protein for the formation of a disulphide bridge, which could be at the origin of the loss of function

    An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase

    Get PDF
    Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe

    Regulation of caspase-3 processing by cIAP2 controls the switch between pro-inflammatory activation and cell death in microglia.

    Get PDF
    Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International Licence. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons licence, users will need to obtain permission from the licence holder to reproduce the material.The activation of microglia, resident immune cells of the central nervous system, and inflammation-mediated neurotoxicity are typical features of neurodegenerative diseases, for example, Alzheimer's and Parkinson's diseases. An unexpected role of caspase-3, commonly known to have executioner role for apoptosis, was uncovered in the microglia activation process. A central question emerging from this finding is what prevents caspase-3 during the microglia activation from killing those cells? Caspase-3 activation occurs as a two-step process, where the zymogen is first cleaved by upstream caspases, such as caspase-8, to form intermediate, yet still active, p19/p12 complex; thereafter, autocatalytic processing generates the fully mature p17/p12 form of the enzyme. Here, we show that the induction of cellular inhibitor of apoptosis protein 2 (cIAP2) expression upon microglia activation prevents the conversion of caspase-3 p19 subunit to p17 subunit and is responsible for restraining caspase-3 in terms of activity and subcellular localization. We demonstrate that counteracting the repressive effect of cIAP2 on caspase-3 activation, using small interfering RNA targeting cIAP2 or a SMAC mimetic such as the BV6 compound, reduced the pro-inflammatory activation of microglia cells and promoted their death. We propose that the different caspase-3 functions in microglia, and potentially other cell types, reside in the active caspase-3 complexes formed. These results also could indicate cIAP2 as a possible therapeutic target to modulate microglia pro-inflammatory activation and associated neurotoxicity observed in neurodegenerative disorders

    Neurofunctional correlates of attention rehabilitation in Parkinson's disease: an explorative study

    Get PDF
    The effectiveness of cognitive rehabilitation (CR) in Parkinson's disease (PD) is in its relative infancy, and nowadays there is insufficient information to support evidence-based clinical protocols. This study is aimed at testing a validated therapeutic strategy characterized by intensive computer-based attention-training program tailored to attention deficits. We further investigated the presence of synaptic plasticity by means of functional magnetic resonance imaging (fMRI). Using a randomized controlled study, we enrolled eight PD patients who underwent a CR program (Experimental group) and seven clinically/demographically-matched PD patients who underwent a placebo intervention (Control group). Brain activity was assessed using an 8-min resting state (RS) fMRI acquisition. Independent component analysis and statistical parametric mapping were used to assess the effect of CR on brain function. Significant effects were detected both at a phenotypic and at an intermediate phenotypic level. After CR, the Experimental group, in comparison with the Control group, showed a specific enhanced performance in cognitive performance as assessed by the SDMT and digit span forward. RS fMRI analysis for all networks revealed two significant groups (Experimental vs Control) × time (T0 vs T1) interaction effects on the analysis of the attention (superior parietal cortex) and central executive neural networks (dorsolateral prefrontal cortex). We demonstrated that intensive CR tailored for the impaired abilities impacts neural plasticity and improves some aspects of cognitive deficits of PD patients. The reported neurophysiological and behavioural effects corroborate the benefits of our therapeutic approach, which might have a reliable application in clinical management of cognitive defici

    Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease

    Get PDF
    Alterations of the dopaminergic (DAergic) system are frequently reported in Alzheimer’s disease (AD) patients and are commonly linked to cognitive and non-cognitive symptoms. However, the cause of DAergic system dysfunction in AD remains to be elucidated. We investigated alterations of the midbrain DAergic system in the Tg2576 mouse model of AD, overexpressing a mutated human amyloid precursor protein (APPswe). Here, we found an age-dependent DAergic neuron loss in the ventral tegmental area (VTA) at pre-plaque stages, although substantia nigra pars compacta (SNpc) DAergic neurons were intact. The selective VTA DAergic neuron degeneration results in lower DA outflow in the hippocampus and nucleus accumbens (NAc) shell. The progression of DAergic cell death correlates with impairments in CA1 synaptic plasticity, memory performance and food reward processing. We conclude that in this mouse model of AD, degeneration of VTA DAergic neurons at pre-plaque stages contributes to memory deficits and dysfunction of reward processing

    On p-saturable groups

    Get PDF
    AbstractA pro-p group G is a PF-group if it has central series of closed subgroups {Ni}i∈N with trivial intersection satisfying N1=G and [Ni,G,…p−1,G]⩽Ni+1p. In this paper, we prove that a finitely generated pro-p group G is a p-saturable group, in the sense of Lazard, if and only if it is a torsion free PF-group. Using this characterization, we study certain families of subgroups of p-saturable groups. For example, we prove that any normal subgroup of a p-saturable group contained in the Frattini is again p-saturable
    corecore