822 research outputs found

    Semiclassical model for a memory dephasing channel

    Full text link
    We study a dephasing channel with memory, described by a Hamiltonian model in which the system-environment interaction is described by a stochastic process. We propose a useful way to describe the channel uses correlations. Moreover, we give a general expression for the coherences decay factors as a function of the number of channel uses and of the stochastic process power spectrum. We also study the impact of memory on the three qubit code, showing that correlations among channel uses affect very little the code performance.Comment: 8pages, 3 figures, proceedings of CEWQO 2008 Conferenc

    Design of a Lambda system for population transfer in superconducting nanocircuits

    Get PDF
    The implementation of a Lambda scheme in superconducting artificial atoms could allow detec- tion of stimulated Raman adiabatic passage (STIRAP) and other quantum manipulations in the microwave regime. However symmetries which on one hand protect the system against decoherence, yield selection rules which may cancel coupling to the pump external drive. The tradeoff between efficient coupling and decoherence due to broad-band colored Noise (BBCN), which is often the main source of decoherence is addressed, in the class of nanodevices based on the Cooper pair box (CPB) design. We study transfer efficiency by STIRAP, showing that substantial efficiency is achieved for off-symmetric bias only in the charge-phase regime. We find a number of results uniquely due to non-Markovianity of BBCN, namely: (a) the efficiency for STIRAP depends essentially on noise channels in the trapped subspace; (b) low-frequency fluctuations can be analyzed and represented as fictitious correlated fluctuations of the detunings of the external drives; (c) a simple figure of merit for design and operating prescriptions allowing the observation of STIRAP is proposed. The emerging physical picture also applies to other classes of coherent nanodevices subject to BBCN.Comment: 14 pages, 11 figure

    Broadband noise decoherence in solid-state complex architectures

    Full text link
    Broadband noise represents a severe limitation towards the implementation of a solid-state quantum information processor. Considering common spectral forms, we propose a classification of noise sources based on the effects produced instead of on their microscopic origin. We illustrate a multi-stage approach to broadband noise which systematically includes only the relevant information on the environment, out of the huge parametrization needed for a microscopic description. We apply this technique to a solid-state two-qubit gate in a fixed coupling implementation scheme.Comment: Proceedings of Nobel Symposium 141: Qubits for Future Quantum Informatio

    Decoherence times of universal two-qubit gates in the presence of broad-band noise

    Full text link
    The controlled generation of entangled states of two quantum bits is a fundamental step toward the implementation of a quantum information processor. In nano-devices this operation is counteracted by the solid-state environment, characterized by a broadband and non-monotonic power spectrum, often 1/f at low frequencies. For single-qubit gates, incoherent processes due to fluctuations acting on different time scales result in peculiar short- and long-time behavior. Markovian noise gives rise to exponential decay with relaxation and decoherence times, T1 and T2, simply related to the symmetry of the qubit-environment coupling Hamiltonian. Noise with the 1/f power spectrum at low frequencies is instead responsible for defocusing processes and algebraic short-time behavior. In this paper, we identify the relevant decoherence times of an entangling operation due to the different decoherence channels originating from solid-state noise. Entanglement is quantified by concurrence, which we evaluate in an analytic form employing a multi-stage approach. The 'optimal' operating conditions of reduced sensitivity to noise sources are identified. We apply this analysis to a superconducting \sqrt{i-SWAP} gate for experimental noise spectra.Comment: 35 pages, 11 figure

    Effects of low-frequency noise cross-correlations in coupled superconducting qubits

    Full text link
    We study the effects of correlated low frequency noise sources acting on a two qubit gate in a fixed coupling scheme. A phenomenological model for the spatial and cross-talk correlations is introduced. The decoherence inside the SWAP subspace is analysed by combining analytic results based on the adiabatic approximation and numerical simulations. Results critically depend on amplitude of the low frequency noise with respect to the qubits coupling strength. Correlations between noise sources induce qualitative different behaviors depending on the values of the above parameters. The possibility to reduce dephasing due to correlated low frequency noise by a recalibration protocol is discussed.Comment: 18 pages, 7 figure

    Inter-decadal climate variability in the Southern Hemisphere: evidence from Tasmanian tree rings over the past three millennia

    Get PDF
    EXTRACT (SEE PDF FOR FULL ABSTRACT): The characterization of inter-decadal climate variability in the Southern Hemisphere is severely constrained by the shortness of the instrumental climate records. To help relieve this constraint, we have developed and analyzed a reconstruction of warm-season (November-April) temperatures from Tasmanian tree rings that now extends back to 800 BC. A detailed analysis of this reconstruction in the time and frequency domains indicates that much of the inter-decadal variability is principally confined to four frequency bands with mean periods of 31, 57, 77, and 200 years. ... In so doing, we show how a future greenhouse warming signal over Tasmania could be masked by these natural oscillations unless they are taken into account

    Role of the target orientation angle and orbital angular momentum in the evaporation residue production

    Full text link
    The influence of the orientation angles of the target nucleus symmetry axis relative to the beam direction on the production of the evaporation residues is investigated for the 48^{48}Ca+154^{154}Sm reaction as a function of the beam energy. At low energies (Ec.m.<E_{\rm c.m.}<137 MeV), the yield of evaporation residues is observed only for collisions with small orientation angles (αT<450\alpha_T<45^0). At large energies (about Ec.m.=E_{\rm c.m.}=140--180 MeV) all the orientation angles αT\alpha_T can contribute to the evaporation residue cross section σER\sigma_{ER} in the 10--100 mb range, and at Ec.m.>E_{c.m.}>180 MeV σER\sigma_{ER} ranges around 0.1--10 mb because the fission barrier for a compound nucleus decreases by increasing its excitation energy and angular momentum.Comment: 20 pages, 10 figures, submitted to JPS

    Bremsstrahlung in Alpha-Decay

    Full text link
    We present the first fully quantum mechanical calculation of photon radiation accompanying charged particle decay from a barrier resonance. The soft-photon limit agrees with the classical results, but differences appear at next-to-leading-order. Under the conditions of alpha-decay of heavy nuclei, the main contribution to the photon emission stems from Coulomb acceleration and may be computed analytically. We find only a small contribution from the tunneling wave function under the barrier.Comment: 12 pages, 2 Postscript figure

    A Concept for an STJ-based Spectrograph

    Full text link
    We describe a multi-order spectrograph concept suitable for 8m-class telescopes, using the intrinsic spectral resolution of Superconducting Tunneling Junction detectors to sort the spectral orders. The spectrograph works at low orders, 1-5 or 1-6, and provides spectral coverage with a resolving power of R~8000 from the atmospheric cutoff at 320 nm to the long wavelength end of the infrared H or K band at 1800 nm or 2400 nm. We calculate that the spectrograph would provide substantial throughput and wavelength coverage, together with high time resolution and sufficient dynamic range. The concept uses currently available technology, or technologies with short development horizons, restricting the spatial sampling to two linear arrays; however an upgrade path to provide more spatial sampling is identified. All of the other challenging aspects of the concept - the cryogenics, thermal baffling and magnetic field biasing - are identified as being feasible.Comment: Accepted in Monthly Notices of the Royal Astronomical Society, 12 pages with 10 figure

    Design of a novel LOX-1 receptor antagonist mimicking the natural substrate

    Get PDF
    The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the major receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells, is overexpressed in atherosclerotic lesions. LOX-1 specific inhibitors, urgently necessary to reduce the rate of atherosclerotic and inflammation processes, are not yet available. We have designed and synthesized a new modified oxidized phospholipid, named PLAzPC, which plays to small scale the ligand-receptor recognition scheme. Molecular docking simulations confirm that PLAzPC disables the hydrophobic component of the ox-LDL recognition domain and allows the interaction of the l-lysine backbone charged groups with the solvent and with the charged/polar residues located around the edges of the LOX-1 hydrophobic tunnel. Binding assays, in a cell model system expressing human LOX-1 receptors, confirm that PLAzPC markedly inhibits ox-LDL binding to LOX-1 with higher efficacy compared to previously identified inhibitors
    corecore