216 research outputs found
In situ observation of stress relaxation in epitaxial graphene
Upon cooling, branched line defects develop in epitaxial graphene grown at
high temperature on Pt(111) and Ir(111). Using atomically resolved scanning
tunneling microscopy we demonstrate that these defects are wrinkles in the
graphene layer, i.e. stripes of partially delaminated graphene. With low energy
electron microscopy (LEEM) we investigate the wrinkling phenomenon in situ.
Upon temperature cycling we observe hysteresis in the appearance and
disappearance of the wrinkles. Simultaneously with wrinkle formation a change
in bright field imaging intensity of adjacent areas and a shift in the moire
spot positions for micro diffraction of such areas takes place. The stress
relieved by wrinkle formation results from the mismatch in thermal expansion
coefficients of graphene and the substrate. A simple one-dimensional model
taking into account the energies related to strain, delamination and bending of
graphene is in qualitative agreement with our observations.Comment: Supplementary information: S1: Photo electron emission microscopy and
LEEM measurements of rotational domains, STM data of a delaminated bulge
around a dislocation. S2: Movie with increasing brightness upon wrinkle
formation as in figure 4. v2: Major revision including new experimental dat
Selecting a single orientation for millimeter sized graphene sheets
We have used Low Energy Electron Microscopy (LEEM) and Photo Emission
Electron Microscopy (PEEM) to study and improve the quality of graphene films
grown on Ir(111) using chemical vapor deposition (CVD). CVD at elevated
temperature already yields graphene sheets that are uniform and of monatomic
thickness. Besides domains that are aligned with respect to the substrate,
other rotational variants grow. Cyclic growth exploiting the faster growth and
etch rates of the rotational variants, yields films that are 99 % composed of
aligned domains. Precovering the substrate with a high density of graphene
nuclei prior to CVD yields pure films of aligned domains extending over
millimeters. Such films can be used to prepare cluster-graphene hybrid
materials for catalysis or nanomagnetism and can potentially be combined with
lift-off techniques to yield high-quality, graphene based electronic devices
Oxidation of graphene on metals
We use low-energy electron microscopy to investigate how graphene is removed
from Ru(0001) and Ir(111) by reaction with oxygen. We find two mechanisms on
Ru(0001). At short times, oxygen reacts with carbon monomers on the surrounding
Ru surface, decreasing their concentration below the equilibrium value. This
undersaturation causes a flux of carbon from graphene to the monomer gas. In
this initial mechanism, graphene is etched at a rate that is given precisely by
the same non-linear dependence on carbon monomer concentration that governs
growth. Thus, during both growth and etching, carbon attaches and detaches to
graphene as clusters of several carbon atoms. At later times, etching
accelerates. We present evidence that this process involves intercalated
oxygen, which destabilizes graphene. On Ir, this mechanism creates observable
holes. It also occurs mostly quickly near wrinkles in the graphene islands,
depends on the orientation of the graphene with respect to the Ir substrate,
and, in contrast to the first mechanism, can increase the density of carbon
monomers. We also observe that both layers of bilayer graphene islands on Ir
etch together, not sequentially.Comment: 15 pages, 10 figures. Manuscript revised to improve discussion,
following referee comments. Accepted for publication in Journal of Physical
Chemistry C, Feb. 11, 201
Molybdenum(VI) Nitrido Complexes with Tripodal Silanolate Ligands. Structure and Electronic Character of an Unsymmetrical Dimolybdenum μ-Nitrido Complex Formed by Incomplete Nitrogen Atom Transfer
In contrast to a tungsten nitrido complex endowed with a tripodal silanolate ligand framework, which was reported in the literature to be a dimeric species with a metallacyclic core, the corresponding molybdenum nitrides 3 are monomeric entities comprising a regular terminal nitride unit, as proven by single-crystal X-ray diffraction (SC-XRD). Their electronic character is largely determined by the constraints imposed on the metal center by the podand ligand architecture. 95Mo nuclear magnetic resonance (NMR) and, to a lesser extent, 14N NMR spectroscopy allow these effects to be studied, which become particularly apparent upon comparison with the spectral data of related molybdenum nitrides comprising unrestrained silanolate, alkoxide, or amide ligands. Attempted nitrogen atom transfer from these novel terminal nitrides to [(tBuArN)3Mo] (Ar = 3,5-dimethylphenyl) as the potential acceptor stopped at the stage of unsymmetric dimolybdenum μ-nitrido complex 13a as the first intermediate along the reaction pathway. SC-XRD, NMR, electron paramagnetic resonance, and ultraviolet–visible spectroscopy as well as magnetometry in combination with density functional theory allowed a clear picture of the geometric and electronic structure of this mixed-valent species to be drawn. 13a is formally best described as an adduct of the type [(Mo[O])+III–(μN)−III–(Mo[N])+VI], S = 1/2 complex with (Mo[O])+III in the low-spin configuration, whereas related complexes such as [(AdS)3Mo–(μN)–Mo(NtBuAr)3] (19; Ad = 1-adamantyl) have previously been regarded in the literature as mixed-valent Mo+IV/Mo+V species. The spin population at the two Mo centers is uneven and notably larger at the more reduced Mo[O] atom, whereas the only spin present at the (μN) bridge is derived from spin polarization
Photochemical dihydrogen production using an analogue of the active site of [NiFe] hydrogenase
The photoproduction of dihydrogen (H2) by a low molecular weight analogue of the active site of [NiFe] hydrogenase has been investigated by the reduction of the [NiFe2] cluster, 1, by a photosensitier PS (PS = [ReCl(CO)3(bpy)] or [Ru(bpy)3][PF6]2). Reductive quenching of the 3MLCT excited state of the photosensitiser by NEt3 or N(CH2CH2OH)3 (TEOA) generates PS•−, and subsequent intermolecular electron transfer to 1 produces the reduced anionic form of 1. Time-resolved infrared spectroscopy (TRIR) has been used to probe the intermediates throughout the reduction of 1 and subsequent photocatalytic H2 production from [HTEOA][BF4], which was monitored by gas chromatography. Two structural isomers of the reduced form of 1 (1a•− and 1b•−) were detected by Fourier transform infrared spectroscopy (FTIR) in both CH3CN and DMF (dimethylformamide), while only 1a•− was detected in CH2Cl2. Structures for these intermediates are proposed from the results of density functional theory calculations and FTIR spectroscopy. 1a•− is assigned to a similar structure to 1 with six terminal carbonyl ligands, while calculations suggest that in 1b•− two of the carbonyl groups bridge the Fe centres, consistent with the peak observed at 1714 cm−1 in the FTIR spectrum for 1b•− in CH3CN, assigned to a ν(CO) stretching vibration. The formation of 1a•− and 1b•− and the production of H2 was studied in CH3CN, DMF and CH2Cl2. Although the more catalytically active species (1a•− or 1b•−) could not be determined, photocatalysis was observed only in CH3CN and DMF
The stability inequality for Ricci-flat cones
In this article, we thoroughly investigate the stability inequality for Ricci-flat cones. Perhaps most importantly, we prove that the Ricci-flat cone over CP^2 is stable, showing that the first stable non-flat Ricci-flat cone occurs in the smallest possible dimension. On the other hand, we prove that many other examples of Ricci-flat cones over 4-manifolds are unstable, and that Ricci-flat cones over products of Einstein manifolds and over Kähler-Einstein manifolds with h^{1,1}>1 are unstable in dimension less than 10. As results of independent interest, our computations indicate that the Page metric and the Chen-LeBrun-Weber metric are unstable Ricci shrinkers. As a final bonus, we give plenty of motivations, and partly confirm a conjecture of Tom Ilmanen relating the lambda-functional, the positive mass theorem and the nonuniqueness of Ricci flow with conical initial data
Chinese journals: a guide for epidemiologists.
Chinese journals in epidemiology, preventive medicine and public health contain much that is of potential international interest. However, few non-Chinese speakers are acquainted with this literature. This article therefore provides an overview of the contemporary scene in Chinese biomedical journal publication, Chinese bibliographic databases and Chinese journals in epidemiology, preventive medicine and public health. The challenge of switching to English as the medium of publication, the development of publishing bibliometric data from Chinese databases, the prospect of an Open Access publication model in China, the issue of language bias in literature reviews and the quality of Chinese journals are discussed. Epidemiologists are encouraged to search the Chinese bibliographic databases for Chinese journal articles.Published versio
Role of a pineal cAMP-operated arylalkylamine N-acetyltransferase/14-3-3-binding switch in melatonin synthesis
Towards an M5-Brane Model II:Metric String Structures
In this paper, we develop the mathematical formulation of metric string
structures. These play a crucial role in the formulation of certain
six-dimensional superconformal field theories and we believe that they also
underlie potential future formulations of the (2,0)-theory. We show that the
connections on non-abelian gerbes usually introduced in the literature are
problematic in that they are locally gauge equivalent to connections on abelian
gerbes. Connections on string structures form an exception and we introduce the
general concept of an adjusted Weil algebra leading to potentially interacting
connections on higher principal bundles. Considering a special case, we derive
the metric extension of string structures and the corresponding adjusted Weil
algebra. The latter lead to connections that were previously constructed by
hand in the context of gauged supergravities. We also explain how the Leibniz
algebras induced by an embedding tensor in gauged supergravities fit into our
picture.Comment: v2: 70 pages, presentation improved, typos fixed, published versio
- …
