97 research outputs found

    Using Sensor Metadata Streams to Identify Topics of Local Events in the City

    Get PDF
    In this paper, we study the emerging Information Retrieval (IR) task of local event retrieval using sensor metadata streams. Sensor metadata streams include information such as the crowd density from video processing, audio classifications, and social media activity. We propose to use these metadata streams to identify the topics of local events within a city, where each event topic corresponds to a set of terms representing a type of events such as a concert or a protest. We develop a supervised approach that is capable of mapping sensor metadata observations to an event topic. In addition to using a variety of sensor metadata observations about the current status of the environment as learning features, our approach incorporates additional background features to model cyclic event patterns. Through experimentation with data collected from two locations in a major Spanish city, we show that our approach markedly outperforms an alternative baseline. We also show that modelling background information improves event topic identification

    CentralNet: a Multilayer Approach for Multimodal Fusion

    Full text link
    This paper proposes a novel multimodal fusion approach, aiming to produce best possible decisions by integrating information coming from multiple media. While most of the past multimodal approaches either work by projecting the features of different modalities into the same space, or by coordinating the representations of each modality through the use of constraints, our approach borrows from both visions. More specifically, assuming each modality can be processed by a separated deep convolutional network, allowing to take decisions independently from each modality, we introduce a central network linking the modality specific networks. This central network not only provides a common feature embedding but also regularizes the modality specific networks through the use of multi-task learning. The proposed approach is validated on 4 different computer vision tasks on which it consistently improves the accuracy of existing multimodal fusion approaches

    Investigating non-classical correlations between decision fused multi-modal documents

    Get PDF
    Correlation has been widely used to facilitate various information retrieval methods such as query expansion, relevance feedback, document clustering, and multi-modal fusion. Especially, correlation and independence are important issues when fusing different modalities that influence a multi-modal information retrieval process. The basic idea of correlation is that an observable can help predict or enhance another observable. In quantum mechanics, quantum correlation, called entanglement, is a sort of correlation between the observables measured in atomic-size particles when these particles are not necessarily collected in ensembles. In this paper, we examine a multimodal fusion scenario that might be similar to that encountered in physics by firstly measuring two observables (i.e., text-based relevance and image-based relevance) of a multi-modal document without counting on an ensemble of multi-modal documents already labeled in terms of these two variables. Then, we investigate the existence of non-classical correlations between pairs of multi-modal documents. Despite there are some basic differences between entanglement and classical correlation encountered in the macroscopic world, we investigate the existence of this kind of non-classical correlation through the Bell inequality violation. Here, we experimentally test several novel association methods in a small-scale experiment. However, in the current experiment we did not find any violation of the Bell inequality. Finally, we present a series of interesting discussions, which may provide theoretical and empirical insights and inspirations for future development of this direction

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF
    corecore