963 research outputs found
Inversion of perturbation series
We investigate the inversion of perturbation series and its resummation, and
prove that it is related to a recently developed parametric perturbation
theory. Results for some illustrative examples show that in some cases series
reversion may improve the accuracy of the results
Variational collocation for systems of coupled anharmonic oscillators
We have applied a collocation approach to obtain the numerical solution to
the stationary Schr\"odinger equation for systems of coupled oscillators. The
dependence of the discretized Hamiltonian on scale and angle parameters is
exploited to obtain optimal convergence to the exact results. A careful
comparison with results taken from the literature is performed, showing the
advantages of the present approach.Comment: 14 pages, 10 table
The confined hydrogen atom with a moving nucleus
We study the hydrogen atom confined to a spherical box with impenetrable
walls but, unlike earlier pedagogical articles on the subject, we assume that
the nucleus also moves. We obtain the ground-state energy approximately by
means of first--order perturbation theory and by a more accurate variational
approach. We show that it is greater than the one for the case in which the
nucleus is clamped at the center of the box. Present approach resembles the
well-known treatment of the helium atom with clamped nucleus
Variational collocation on finite intervals
In this paper we study a new family of sinc--like functions, defined on an
interval of finite width. These functions, which we call ``little sinc'', are
orthogonal and share many of the properties of the sinc functions. We show that
the little sinc functions supplemented with a variational approach enable one
to obtain accurate results for a variety of problems. We apply them to the
interpolation of functions on finite domain and to the solution of the
Schr\"odinger equation, and compare the performance of present approach with
others.Comment: 12 pages, 8 figures, 1 tabl
Solution to the Equations of the Moment Expansions
We develop a formula for matching a Taylor series about the origin and an
asymptotic exponential expansion for large values of the coordinate. We test it
on the expansion of the generating functions for the moments and connected
moments of the Hamiltonian operator. In the former case the formula produces
the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We
choose the harmonic oscillator and a strongly anharmonic oscillator as
illustrative examples for numerical test. Our results reveal some features of
the connected-moments expansion that were overlooked in earlier studies and
applications of the approach
Colour superconductivity in finite systems
In this paper we study the effect of finite size on the two-flavour colour
superconducting state. As well as restricting the quarks to a box, we project
onto states of good baryon number and onto colour singlets, these being
necessary restrictions on any observable ``quark nuggets''. We find that
whereas finite size alone has a significant effect for very small boxes, with
the superconducting state often being destroyed, the effect of projection is to
restore it again. The infinite-volume limit is a good approximation even for
quite small systems.Comment: 14 pages RevTeX4, 12 eps figure
Chiral quark-soliton model in the Wigner-Seitz approximation
In this paper we study the modification of the properties of the nucleon in
the nucleus within the quark-soliton model. This is a covariant, dynamical
model, which provides a non-linear representation of the spontaneously broken
SU(2)_L X SU(2)_R symmetry of QCD. The effects of the nuclear medium are
accounted for by using the Wigner-Seitz approximation and therefore reducing
the complex many-body problem to a simpler single-particle problem. We find a
minimum in the binding energy at finite density, a change in the isoscalar
nucleon radius and a reduction of the in-medium pion decay constant. The latter
is consistent with a partial restoration of chiral symmetry at finite density,
which is predicted by other models.Comment: 30 pages, 13 figures; uses REVTeX and epsfi
Deeply Virtual Neutrino Scattering (DVNS)
We introduce the study of neutrino scattering off protons in the deeply
virtual kinematics, which describes under a unified formalism elastic and deep
inelastic neutrino scattering. A real final state photon and a recoiling
nucleon are detected in the few GeV ( GeV) region of momentum
transfer. This is performed via an extension of the notion of deeply virtual
Compton scattering, or DVCS, to the case of a neutral current exchange. The
relevance of this process and of other similar exclusive processes for the
study of neutrino interactions in neutrino factories for GeV neutrinos is
pointed out.Comment: 28 pages, 12 figures, revised final version, to appear in JHE
Chiral phase properties of finite size quark droplets in the Nambu--Jona-Lasinio model
Chiral phase properties of finite size hadronic systems are investigated
within the Nambu--Jona-Lasinio model. Finite size effects are taken into
account by making use of the multiple reflection expansion. We find that, for
droplets with relatively small baryon numbers, chiral symmetry restoration is
enhanced by the finite size effects. However the radius of the stable droplet
does not change much, as compared to that without the multiple reflection
expansion.Comment: RevTex4, 9 pages, 6 figures, to be published in Phys. Rev.
Relativistic Hamiltonians in many-body theories
We discuss the description of a many-body nuclear system using Hamiltonians
that contain the nucleon relativistic kinetic energy and potentials with
relativistic corrections. Through the Foldy-Wouthuysen transformation, the
field theoretical problem of interacting nucleons and mesons is mapped to an
equivalent one in terms of relativistic potentials, which are then expanded at
some order in 1/m_N. The formalism is applied to the Hartree problem in nuclear
matter, showing how the results of the relativistic mean field theory can be
recovered over a wide range of densities.Comment: 14 pages, uses REVTeX and epsfig, 3 postscript figures; a postscript
version of the paper is available by anonymous ftp at
ftp://carmen.to.infn.it/pub/depace/papers/951
- …
