123,342 research outputs found
The conductance of a multi-mode ballistic ring: beyond Landauer and Kubo
The Landauer conductance of a two terminal device equals to the number of
open modes in the weak scattering limit. What is the corresponding result if we
close the system into a ring? Is it still bounded by the number of open modes?
Or is it unbounded as in the semi-classical (Drude) analysis? It turns out that
the calculation of the mesoscopic conductance is similar to solving a
percolation problem. The "percolation" is in energy space rather than in real
space. The non-universal structures and the sparsity of the perturbation matrix
cannot be ignored.Comment: 7 pages, 8 figures, with the correct version of Figs.6-
Non-equilibrium steady state of sparse systems
A resistor-network picture of transitions is appropriate for the study of
energy absorption by weakly chaotic or weakly interacting driven systems. Such
"sparse" systems reach a novel non-equilibrium steady state (NESS) once coupled
to a bath. In the stochastic case there is an analogy to the physics of
percolating glassy systems, and an extension of the fluctuation-dissipation
phenomenology is proposed. In the mesoscopic case the quantum NESS might differ
enormously from the stochastic NESS, with saturation temperature determined by
the sparsity. A toy model where the sparsity of the system is modeled using a
log-normal random ensemble is analyzed.Comment: 6 pages, 6 figures, EPL accepted versio
Gene expression analysis in microdissected renal tissue - Current challenges and strategies
The architecture and compartmentalization of the kidney has stimulated the development of an array of microtechniques to study the functional differences between the distinct nephron segments. With the vast amounts of genomic sequence data now available, the groundwork has been laid for a comprehensive characterization of the molecular pathways defining the differences in nephron function. With the development of sensitive gene expression techniques the tools for a comprehensive molecular analysis of specific renal microenvironments have been provided: Quantitative RT-PCR technologies now allow the analysis of specific mRNAs from as little as single microdissected renal cells. A more global view of gene expression regulation is a logical development from the application of large scale profiling techniques. In this review, we will discuss the power and pitfalls of these approaches, including their potential for the functional characterization of nephron heterogeneity and diagnostic application in renal disease. Copyright (C) 2002 S. Karger AG, Basel
A Poset Connected to Artin Monoids of Simply Laced Type
Let W be a Weyl group whose type is a simply laced Dynkin diagram. On several
W-orbits of sets of mutually commuting reflections, a poset is described which
plays a role in linear representatons of the corresponding Artin group A. The
poset generalizes many properties of the usual order on positive roots of W
given by height. In this paper, a linear representation of the positive monoid
of A is defined by use of the poset
A simple toy model for effective restoration of chiral symmetry in excited hadrons
A simple solvable toy model exhibiting effective restoration of chiral
symmetry in excited hadrons is constructed. A salient feature is that while
physics of the low-lying states is crucially determined by the spontaneous
breaking of chiral symmetry, in the high-lying states the effects of chiral
symmetry breaking represent only a small correction. Asymptotically the states
approach the regime where their properties are determined by the underlying
unbroken chiral symmetry.Comment: This is the published version of this paper. Note that the title has
changed from earlier versions as has the abstract. The emphasis is slightly
different from previous versions but the essential physical content is the
sam
Quantum-Mechanical Non-Perturbative Response of Driven Chaotic Mesoscopic Systems
Consider a time-dependent Hamiltonian with periodic driving
. It is assumed that the classical dynamics is chaotic,
and that its power-spectrum extends over some frequency range
. Both classical and quantum-mechanical (QM) linear
response theory (LRT) predict a relatively large response for
, and a relatively small response otherwise, independently
of the driving amplitude . We define a non-perturbative regime in the
space, where LRT fails, and demonstrate this failure numerically.
For , where , the system may have a relatively
strong response for , and the shape of the response
function becomes dependent.Comment: 4 pages, 2 figures, revised version with much better introductio
The structure of Herbig-Haro object 43 and Orion dark cloud extinction
New ultraviolet and optical observations of Herbig-Haro Object No. 43 are reported. Continuum and emission line fluxes in the range 1250 A equal to or less than lambda equal to less than 7350A have been measured. The continuum fluxes are best matched by an enhanced H two photon component added to H free bound emission, assuming theta Ori extinction curve with E(B-V) = 0.2, R = 5. The strucutre and dynamics of three components within the object are discussed. The object has a radiative output of equal to or greater than 0.23 infrared luminosity in ultraviolet and optical radiation combined. The energy requirements are discussed in terms of the production of shock waves by a collimated, supersonic mass outflow from a nearby infrared source
Lick Slit Spectra of Thirty-Eight Objective Prism QSO Candidates and Low Metallicity Halo Stars
We present Lick Observatory slit spectra of 38 objects which were claimed to
have pronounced ultraviolet excess and emission lines by Zhan \& Chen. Most of
our spectra have FWHM spectral resolutions of about 4~\AA , and relatively high
S/N of about 10 -- 50, although some have FWHM ~\AA ~or lower S/N.
We find eleven QSOs, four galaxies at , twenty-two stars and one
unidentified object with a low S/N spectrum. Six of the QSOs show absorption
systems, including Q0000+027A with a relatively strong associated C~IV
absorption system, and Q0008+008 (V) with a damped Ly
system with an H~I column density of cm. The stars include a
wide variety of spectral types. There is one new DA4 white dwarf at 170~pc, one
sdB at 14~kpc, and three M stars. The rest are of types F, G and K. We have
measured the equivalent widths of the Ca~II~K line, the G-band and the Balmer
lines in ten stars with the best spectra, and we derive metallicities. Seven of
them are in the range ~[Fe/H]~, while the others are less
metal poor. If the stars are dwarfs, then they are at distances of 1 to 7~kpc,
but if they are giants, typical distances will be about 10~kpc.Comment: (Plain Tex, 21 pages, including tables. Send email to
'travell_oir%[email protected]' for 12 pages of figures) To appear in the
%%Astronomical Journal, August, 199
Viscosity of Colloidal Suspensions
Simple expressions are given for the Newtonian viscosity as
well as the viscoelastic behavior of the viscosity of
neutral monodisperse hard sphere colloidal suspensions as a function of volume
fraction and frequency over the entire fluid range, i.e., for
volume fractions . These expressions are based on an
approximate theory which considers the viscosity as composed as the sum of two
relevant physical processes: , where is the
infinite frequency (or very short time) viscosity, with the solvent
viscosity, the equilibrium hard sphere radial distribution
function at contact, and the contribution due to the
diffusion of the colloidal particles out of cages formed by their neighbors, on
the P\'{e}clet time scale , the dominant physical process in
concentrated colloidal suspensions. The Newtonian viscosity agrees very well with the extensive experiments of Van
der Werff et al and others. Also, the asymptotic behavior for large is
of the form , in agreement
with these experiments, but the theoretical coefficient differs by a
constant factor from the exact coefficient, computed from the
Green-Kubo formula for . This still enables us to predict
for practical purposes the visco-elastic behavior of monodisperse spherical
colloidal suspensions for all volume fractions by a simple time rescaling.Comment: 51 page
The WISE InfraRed Excesses around Degenerates (WIRED) Survey
The Wide-field Infrared Survey Explorer (WISE) is a NASA medium class Explorer
mission that performed an all sky survey in four infrared bands. We present an overview of the WISE
InfraRed Excesses around Degenerates (WIRED) Survey, which has the goals of characterizing
white dwarf stars in the WISE bands, confirming objects known to have infrared excess from past
observations, and revealing new examples of white dwarfs with infrared excess that can be attributed
to unresolved companions or debris disks. We obtained preliminary WISE detections (S/N > 2) in
at least one band of 405 white dwarfs from the 9316 unique possible targets in the Sloan Digital
Sky Survey Data Release 4 Catalog of Spectroscopically Identified White Dwarfs (not all potential
targets were available in the sky coverage used here). A companion paper in this volume discusses
specific results from our target detections
- …
