22,381 research outputs found
The role of human resources on the economy: a study of the Balkan eu member states
In this paper we analyze the impact of the quality of human capital on the main economic indicators of South-Eastern Europe countries [SEE] at the NUTS 2 level. The subjects of this research are the human capital indicators of regional competitiveness. The quality of human capital depends largely on the age structure of the population and the quality of education. Those regions, which have the highest percentage of the working-age population and highly educated people, are able to achieve higher productivity and gain a competitive advantage over other regions. As main indicators of the quality of human capital we identified: population; persons aged 25-64 with tertiary education attainment; students in tertiary education and participation of adults aged 25-64 in education and training and human resources in science and technology. As main economic indicators, we identified: regional gross domestic product; employment and income of households. The aim of this paper is to determine whether there is a correlation between the indicators of the quality of human capital and economic indicators. As a main methodology we have used the correlation coefficient which shows interdependence of the analyzed indicators. As part of our analysis, we consider only EU member states that belong to the SEE countries: Slovenia, Croatia, Romania, Bulgaria and Greece. We conclude that in all countries there is a high multiple correlation coefficient between the indicators human resources in science and technology, number of students and employment.This paper is the result of the project No. 47007 III funded by the Ministry for Education, Science and Technological Development of Republic of Serbia
Statistical mixing and aggregation in Feller diffusion
We consider Feller mean-reverting square-root diffusion, which has been
applied to model a wide variety of processes with linearly state-dependent
diffusion, such as stochastic volatility and interest rates in finance, and
neuronal and populations dynamics in natural sciences. We focus on the
statistical mixing (or superstatistical) process in which the parameter related
to the mean value can fluctuate - a plausible mechanism for the emergence of
heavy-tailed distributions. We obtain analytical results for the associated
probability density function (both stationary and time dependent), its
correlation structure and aggregation properties. Our results are applied to
explain the statistics of stock traded volume at different aggregation scales.Comment: 16 pages, 3 figures. To be published in Journal of Statistical
Mechanics: Theory and Experimen
The role of the nature of the noise in the thermal conductance of mechanical systems
Focussing on a paradigmatic small system consisting of two coupled damped
oscillators, we survey the role of the L\'evy-It\^o nature of the noise in the
thermal conductance. For white noises, we prove that the L\'evy-It\^o
composition (Lebesgue measure) of the noise is irrelevant for the thermal
conductance of a non-equilibrium linearly coupled chain, which signals the
independence between mechanical and thermodynamical properties. On the other
hand, for the non-linearly coupled case, the two types of properties mix and
the explicit definition of the noise plays a central role.Comment: 9 pages, 2 figures. To be published in Physical Review
Preparation of ethylcellulose/methylcellulose blends by supercritical antisolvent precipitation
The supercritical antisolvent (SAS) techniquewas used to prepare ethyl cellulose/methyl cellulose blends, two biocompatible polymers commonly
used as drug carriers in controlled delivery systems. Ethyl cellulose is widely used as a drug carrier. The drug release of the delivery devices can
be controlled to some extent by addition of a water-soluble or water swellable polymer, such as methyl cellulose. This leads to the solubility
enhancement of poorly water-soluble molecules. SAS experiments were carried out at different operational conditions and microspheres with mean
diameters ranging from 5 to 30 m were obtained. The effect of CO2 and liquid flow, temperature and pressure on particle size and particle size
distribution was evaluated. The microspheres were precipitated from a mixture of dichloromethane (DCM) and dimethylsulfoxide (DMSO) (4:1
ratio). The best process conditions for this mixture were according to our study 40 ◦C and 80 bar
Bipolar HII regions - Morphology and star formation in their vicinity - I - G319.8800.79 and G010.3200.15
Our goal is to identify bipolar HII regions and to understand their
morphology, their evolution, and the role they play in the formation of new
generations of stars. We use the Spitzer and Herschel Hi-GAL surveys to
identify bipolar HII regions. We search for their exciting star(s) and estimate
their distances using near-IR data. Dense clumps are detected using
Herschel-SPIRE data. MALT90 observations allow us to ascertain their
association with the central HII region. We identify Class 0/I YSOs using their
Spitzer and Herschel-PACS emissions. These methods will be applied to the
entire sample of candidate bipolar HII regions. This paper focuses on two
bipolar HII regions, one interesting in terms of its morphology,
G319.8800.79, and one in terms of its star formation, G010.3200.15. Their
exciting clusters are identified and their photometric distances estimated to
be 2.6 kpc and 1.75 kpc, respectively. We suggest that these regions formed in
dense and flat structures that contain filaments. They have a central ionized
region and ionized lobes perpendicular to the parental cloud. The remains of
the parental cloud appear as dense (more than 10^4 per cm^3) and cold (14-17 K)
condensations. The dust in the PDR is warm (19-25 K). Dense massive clumps are
present around the central ionized region. G010.32-00.14 is especially
remarkable because five clumps of several hundred solar masses surround the
central HII region; their peak column density is a few 10^23 per cm^2, and the
mean density in their central regions reaches several 10^5 per cm^3. Four of
them contain at least one massive YSO; these clumps also contain extended green
objects and Class II methanol masers. This morphology suggests that the
formation of a second generation of massive stars has been triggered by the
central bipolar HII region. It occurs in the compressed material of the
parental cloud.Comment: 32 pages, 28 figures, to be published in A&
Spatially resolved integral field spectroscopy of the ionized gas in IZw18
We present a detailed 2D study of the ionized ISM of IZw18 using new PMAS-IFU
optical observations. IZw18 is a high-ionization galaxy which is among the most
metal-poor starbursts in the local Universe. This makes IZw18 a local benchmark
for understanding the properties most closely resembling those prevailing at
distant starbursts. Our IFU-aperture (~ 1.4 kpc x 1.4 kpc) samples the entire
IZw18 main body and an extended region of its ionized gas. Maps of relevant
emission lines and emission line ratios show that higher-excitation gas is
preferentially located close to the NW knot and thereabouts. We detect a
Wolf-Rayet feature near the NW knot. We derive spatially resolved and
integrated physical-chemical properties for the ionized gas in IZw18. We find
no dependence between the metallicity-indicator R23 and the ionization
parameter (as traced by [OIII]/[OII]) across IZw18. Over ~ 0.30 kpc^2, using
the [OIII]4363 line, we compute Te[OIII] values (~ 15000 - 25000 K), and oxygen
abundances are derived from the direct determinations of Te[OIII]. More than
70% of the higher-Te[OIII] (> 22000 K) spaxels are HeII4686-emitting spaxels
too. From a statistical analysis, we study the presence of variations in the
ISM physical-chemical properties. A galaxy-wide homogeneity, across hundreds of
parsecs, is seen in O/H. Based on spaxel-by-spaxel measurements, the
error-weighted mean of 12 + log(O/H) = 7.11 +/- 0.01 is taken as the
representative O/H for IZw18. Aperture effects on the derivation of O/H are
discussed. Using our IFU data we obtain, for the first time, the IZw18
integrated spectrum.Comment: Accepted for publication in MNRAS, 13 pages, 10 figures, 4 table
On exact time-averages of a massive Poisson particle
In this work we study, under the Stratonovich definition, the problem of the
damped oscillatory massive particle subject to a heterogeneous Poisson noise
characterised by a rate of events, \lambda (t), and a magnitude, \Phi,
following an exponential distribution. We tackle the problem by performing
exact time-averages over the noise in a similar way to previous works analysing
the problem of the Brownian particle. From this procedure we obtain the
long-term equilibrium distributions of position and velocity as well as
analytical asymptotic expressions for the injection and dissipation of energy
terms. Considerations on the emergence of stochastic resonance in this type of
system are also set forth.Comment: 21 pages, 5 figures. To be published in Journal of Statistical
Mechanics: Theory and Experimen
Liquid mixtures involving fluorinated alcohols: The equation of state (p, r, T, x) of (Ethanol + Trifluoroethanol) Experimental and Simulation
Liquid mixtures involving fluorinated alcohols:
The equation of state (p, r, T, x) of (Ethanol + Trifluoroethanol)
Experimental and Simulation
Pedro Duartea, Djêide Rodriguesa, Marcelo Silvaa, Pedro Morgadoa,
Luís Martinsa,b and Eduardo J. M. Filipea*
aCentro de Química Estrutural, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
bCentro de Química de Évora, Universidade de Évora, 7000-671 Évora, Portugal
Fluorinated alcohols are substances with unique properties and high technological value in the pharmaceutical and chemical industries. Trifluoroethanol (TFE), in particular, displays a number of unusual properties as a solvent. For example, it dissolves nylon at room temperature and is effectively used as solvent in bioengineering. The presence of the three fluorines atoms gives the alcohol a high ionization constant, strong hydrogen bonding capability and stability at high temperatures.
In the pharmaceutical industry, TFE finds use as the major raw material for the production of inhalation anesthetics. Mixtures of TFE and water (known as Fluorinols®) are used as working fluids for Rankine cycle heat engines for terrestrial and space applications, as a result of a unique combination of physical and thermodynamic properties such as high thermal efficiency and excellent turbine expansion characteristics.
Environmentally, TFE is a CFC substitute with an acceptable short lifetime and with small ozone depletion potential. Additionally, TFE is known to induce conformational changes in proteins and it is used as a co-solvent to analyze structural features of partially folded states.
The (ethanol + TFE) system displays an interesting and peculiar behaviour, combining a negative azeotrope with high positive excess volumes.
In this work, liquid mixtures of (ethanol + TFE) were investigated. The densities of the mixtures were measured as a function of composition between 278K and 338K and at pressures up to 700 bar. The corresponding excess volumes as a function of temperature and pressure, the isothermal compressibilities and thermal expansivities were calculated from the experimental results. The mixtures are highly non-ideal with excess volumes ranging from 0.8 - 1.0 cm3mol-1.
Finally, molecular dynamic simulations were performed to model and interpret the experimental results. The Trappe force field was used to simulate the (TFE + ethanol) mixtures and calculate the corresponding excess volumes. The simulation results are able to reproduce the correct sign and order of magnitude of the experimental VE without fitting to the experimental data. Furthermore, the simulations suggest the presence of a particular type of hydrogen bridge between ethanol and TFE, that can help to rationalize the experimental results
- …
