5,643 research outputs found
A Markov Chain Monte Carlo Algorithm for analysis of low signal-to-noise CMB data
We present a new Monte Carlo Markov Chain algorithm for CMB analysis in the
low signal-to-noise regime. This method builds on and complements the
previously described CMB Gibbs sampler, and effectively solves the low
signal-to-noise inefficiency problem of the direct Gibbs sampler. The new
algorithm is a simple Metropolis-Hastings sampler with a general proposal rule
for the power spectrum, C_l, followed by a particular deterministic rescaling
operation of the sky signal. The acceptance probability for this joint move
depends on the sky map only through the difference of chi-squared between the
original and proposed sky sample, which is close to unity in the low
signal-to-noise regime. The algorithm is completed by alternating this move
with a standard Gibbs move. Together, these two proposals constitute a
computationally efficient algorithm for mapping out the full joint CMB
posterior, both in the high and low signal-to-noise regimes.Comment: Submitted to Ap
Constraints on mode couplings and modulation of the CMB with WMAP data
We investigate a possible asymmetry in the statistical properties of the
cosmic microwave background temperature field and to do so we construct an
estimator aiming at detecting a dipolar modulation. Such a modulation is found
to induce correlations between multipoles with . Applying this
estimator, to the V and W bands of the WMAP data, we found a significant
detection in the V band. We argue however that foregrounds and in particular
point sources are the origin of this signal.Comment: 14 pages, 14 figure
Evidence of vorticity and shear at large angular scales in the WMAP data: a violation of cosmological isotropy?
Motivated by the large-scale asymmetry observed in the cosmic microwave
background sky, we consider a specific class of anisotropic cosmological models
-- Bianchi type VII_h -- and compare them to the WMAP first-year data on large
angular scales. Remarkably, we find evidence of a correlation which is ruled
out as a chance alignment at the 3sigma level. The best fit Bianchi model
corresponds to x=0.55, Omega_0=0.5, a rotation axis in the direction
(l,b)=(222degr,-62degr), shear (sigma/H)_0=2.4e-10 and a right--handed
vorticity (omega/H)_0=6.1e-10. Correcting for this component greatly reduces
the significance of the large-scale power asymmetry, resolves several anomalies
detected on large angular scales (ie. the low quadrupole amplitude and
quadrupole/octopole planarity and alignment), and can account for a
non--Gaussian "cold spot" on the sky. Despite the apparent inconsistency with
the best-fit parameters required in inflationary models to account for the
acoustic peaks, we consider the results sufficiently provocative to merit
further consideration.Comment: 4 pages, 3 figures; emulateapj.cls; ApJL accepted version plus fixed
error in vorticity calculation (sqrt(2) off in Table 1, abstract, and
conclusions); basic conclusions unchange
Real space tests of the statistical isotropy and Gaussianity of the WMAP CMB data
ABRIDGED: We introduce and analyze a method for testing statistical isotropy
and Gaussianity and apply it to the WMAP CMB foreground reduced, temperature
maps, and cross-channel difference maps. We divide the sky into regions of
varying size and shape and measure the first four moments of the one-point
distribution within these regions, and using their simulated spatial
distributions we test the statistical isotropy and Gaussianity hypotheses. By
randomly varying orientations of these regions, we sample the underlying CMB
field in a new manner, that offers a richer exploration of the data content,
and avoids possible biasing due to a single choice of sky division. The
statistical significance is assessed via comparison with realistic Monte-Carlo
simulations.
We find the three-year WMAP maps to agree well with the isotropic, Gaussian
random field simulations as probed by regions corresponding to the angular
scales ranging from 6 deg to 30 deg at 68% confidence level. We report a
strong, anomalous (99.8% CL) dipole ``excess'' in the V band of the three-year
WMAP data and also in the V band of the WMAP five-year data (99.3% CL). We
notice the large scale hemispherical power asymmetry, and find that it is not
highly statistically significant in the WMAP three-year data (<~ 97%) at scales
l <= 40. The significance is even smaller if multipoles up to l=1024 are
considered (~90% CL). We give constraints on the amplitude of the
previously-proposed CMB dipole modulation field parameter. We easily detect the
residual foregrounds in cross-band difference maps at rms level <~ 7 \mu K (at
scales >~ 6 deg) and limit the systematical uncertainties to <~ 1.7 \mu K (at
scales >~ 30 deg).Comment: 20 pages, 20 figures; more tests added; updated to match the version
to be published in JCA
Primordial statistical anisotropy generated at the end of inflation
We present a new mechanism for generating primordial statistical anisotropy
of curvature perturbations. We introduce a vector field which has a non-minimal
kinetic term and couples with a waterfall field in hybrid inflation model. In
such a system, the vector field gives fluctuations of the end of inflation and
hence induces a subcomponent of curvature perturbations. Since the vector has a
preferred direction, the statistical anisotropy could appear in the
fluctuations. We present the explicit formula for the statistical anisotropy in
the primordial power spectrum and the bispectrum of curvature perturbations.
Interestingly, there is the possibility that the statistical anisotropy does
not appear in the power spectrum but does appear in the bispectrum. We also
find that the statistical anisotropy provides the shape dependence to the
bispectrum.Comment: 9 pages, This version supersedes the JCAP version. Minor revision
Computation of local exchange coefficients in strongly interacting one-dimensional few-body systems: local density approximation and exact results
One-dimensional multi-component Fermi or Bose systems with strong zero-range
interactions can be described in terms of local exchange coefficients and
mapping the problem into a spin model is thus possible. For arbitrary external
confining potentials the local exchanges are given by highly non-trivial
geometric factors that depend solely on the geometry of the confinement through
the single-particle eigenstates of the external potential. To obtain accurate
effective Hamiltonians to describe such systems one needs to be able to compute
these geometric factors with high precision which is difficult due to the
computational complexity of the high-dimensional integrals involved. An
approach using the local density approximation would therefore be a most
welcome approximation due to its simplicity. Here we assess the accuracy of the
local density approximation by going beyond the simple harmonic oscillator that
has been the focus of previous studies and consider some double-wells of
current experimental interest. We find that the local density approximation
works quite well as long as the potentials resemble harmonic wells but break
down for larger barriers. In order to explore the consequences of applying the
local density approximation in a concrete setup we consider quantum state
transfer in the effective spin models that one obtains. Here we find that even
minute deviations in the local exchange coefficients between the exact and the
local density approximation can induce large deviations in the fidelity of
state transfer for four, five, and six particles.Comment: 12 pages, 7 figures, 1 table, final versio
Biogas production by co-ensiling catch crops and straw, effect of substrate blend and microbial communities
The combination of catch crop (CC) and barley straw(S) for biogas production was investigated in order to evaluate the ensiling process in batch assay and in continuous process. Based on two new agriculture strategies designed to produce energy and improve nutrient cycling in organic farming are being evaluated, one of them consisting on the harvest of straw and catch crop in different periods whereas the other strategy consists on harvesting them at the same time. Catch crops is promoted to reduce nutrient leaching during rainy season and straw that is not used for animal feeding or bedding is generally left in the field. Mixtures of CC and S provides several advantages: 1) Provides adequate TS for silage, 2) Absorbs the silage effluent, 3) Produces high LAB activity, and 4) Provides an optimal C/N for anaerobic digestion (AD). The effect of feeding compositions (straw or manurea ddition) on the microbial community structures were also investigated
Rigid motion revisited: rigid quasilocal frames
We introduce the notion of a rigid quasilocal frame (RQF) as a geometrically
natural way to define a "system" in general relativity. An RQF is defined as a
two-parameter family of timelike worldlines comprising the worldtube boundary
of the history of a finite spatial volume, with the rigidity conditions that
the congruence of worldlines is expansion-free (constant size) and shear-free
(constant shape). This definition of a system is anticipated to yield simple,
exact geometrical insights into the problem of motion in general relativity. It
begins by answering the questions what is in motion (a rigid two-dimensional
system boundary), and what motions of this rigid boundary are possible. Nearly
a century ago Herglotz and Noether showed that a three-parameter family of
timelike worldlines in Minkowski space satisfying Born's 1909 rigidity
conditions has only three degrees of freedom instead of the six we are familiar
with from Newtonian mechanics. We argue that in fact we can implement Born's
notion of rigid motion in both flat spacetime (this paper) and arbitrary curved
spacetimes containing sources (subsequent papers) - with precisely the expected
three translational and three rotational degrees of freedom - provided the
system is defined quasilocally as the two-dimensional set of points comprising
the boundary of a finite spatial volume, rather than the three-dimensional set
of points within the volume.Comment: 10 pages (two column), 24 pages (preprint), 1 figur
Matrix Factorizations, Minimal Models and Massey Products
We present a method to compute the full non-linear deformations of matrix
factorizations for ADE minimal models. This method is based on the calculation
of higher products in the cohomology, called Massey products. The algorithm
yields a polynomial ring whose vanishing relations encode the obstructions of
the deformations of the D-branes characterized by these matrix factorizations.
This coincides with the critical locus of the effective superpotential which
can be computed by integrating these relations. Our results for the effective
superpotential are in agreement with those obtained from solving the A-infinity
relations. We point out a relation to the superpotentials of Kazama-Suzuki
models. We will illustrate our findings by various examples, putting emphasis
on the E_6 minimal model.Comment: 32 pages, v2: typos corrected, v3: additional comments concerning the
bulk-boundary crossing constraint, some small clarifications, typo
New evidence for lack of CMB power on large scales
A digitalized temperature map is recovered from the first light sky survey
image published by the Planck team, from which an angular power spectrum is
derived. The amplitudes of the low multipoles measured from the preliminary
Planck power spectrum are significantly lower than that reported by the WMAP
team. Possible systematical effects are far from enough to explain the observed
low-l differences.Comment: 9 pages, 3 figure
- …
