31,009 research outputs found
Of Higgs, Unitarity and other Questions
On the verge of conclusive checks on the Standard Model by the LHC, we
discuss some of the basic assumptions. The reason for this analysis stems from
a recent proposal of an Electroweak Model based on a nonlinearly realized gauge
group SU(2) X U(1), where, in the perturbative approximation, there is no Higgs
boson. The model enjoys the Slavnov-Taylor identities and therefore the
perturbative unitarity. On the other hand, it is commonly believed that the
existence of the Higgs boson is entangled with the property of unitarity, when
high energy processes are considered. The argument is based mostly on the
Froissart bound and on the Equivalence Theorem. In this talk we briefly review
some of our objections on the validity of such arguments. Some open questions
are pointed out, in particular on the limit of zero mass for the vector mesons
and on the fate of the longitudinal polarizations.Comment: 23 pages, 1 figure, presented by Ruggero Ferrari at the International
Conference "Gauge Fields. Yesterday, Today, Tomorrow" in honor of A.A.
Slavnov. Moscow, January 19-24 201
The Wide-field High-resolution Infrared TElescope (WHITE)
The Wide-field High-resolution Infrared TElescope (WHITE) will be dedicated
in the first years of its life to carrying out a few (well focused in terms of
science objectives and time) legacy surveys.
WHITE would have an angular resolution of ~0.3'' homogeneous over ~0.7 sq.
deg. in the wavelength range 1 - 5 um, which means that we will very
efficiently use all the available observational time during night time and day
time. Moreover, the deepest observations will be performed by summing up
shorter individual frames. We will have a temporal information that can be used
to study variable objects.
The three key science objectives of WHITE are : 1) A complete survey of the
Magellanic Clouds to make a complete census of young stellar objects in the
clouds and in the bridge and to study their star formation history and the link
with the Milky Way. The interaction of the two clouds with our Galaxy might the
closest example of a minor merging event that could be the main driver of
galaxy evolution in the last 5 Gyrs. 2) The building of the first sample of
dusty supernovae at z<1.2 in the near infrared range (1-5 um) to constrain the
equation of state from these obscured objects, study the formation of dust in
galaxies and build the first high resolution sample of high redshift galaxies
observed in their optical frame 3) A very wide weak lensing survey over that
would allow to estimate the equation of state in a way that would favourably
compete with space projects.Comment: Invited talk to the 2nd ARENA Conference : "The Astrophysical Science
Cases at Dome C" Potsdam 17-21 September, 200
Interference in interacting quantum dots with spin
We study spectral and transport properties of interacting quantum dots with
spin. Two particular model systems are investigated: Lateral multilevel and two
parallel quantum dots. In both cases different paths through the system can
give rise to interference. We demonstrate that this strengthens the multilevel
Kondo effect for which a simple two-stage mechanism is proposed. In parallel
dots we show under which conditions the peak of an interference-induced orbital
Kondo effect can be split.Comment: 8 pages, 8 figure
Effect of recombinant human nerve growth factor eye drops in patients with dry eye: a phase IIa, open label, multiple-dose study
Background: Dry eye disease (DED) affects more than 14% of the elderly population causing decrease of quality of life, high costs and vision impairment. Current treatments for DED aim at lubricating and controlling inflammation of the ocular surface. Development of novel therapies targeting different pathogenic mechanisms is sought-after. The aim of this study is to evaluate safety and efficacy of recombinant human nerve growth factor (rhNGF) eye drops in patients with DED. Methods: Forty consecutive patients with moderate to severe DED were included in a phase IIa, prospective, open label, multiple-dose, clinical trial to receive rhNGF eye drops at 20 μg/mL (Group 1: G1) or at 4 μg/mL (Group 2: G2) concentrations, two times a day in both eyes for 28 days (NCT02101281). The primary outcomes measures were treatment-emerged adverse events (AE), Symptoms Assessment in Dry Eye (SANDE) scale, ocular surface staining and Schirmer test. Results: Of 40 included patients, 39 completed the trial. Both tested rhNGF eye drop concentrations were safe and well tolerated. Twenty-nine patients experienced at least one AE (14 in G1 and 15 in G2), of which 11 had at least 1 related AE (8 in G1 and 3 in G2). Both frequency and severity of DED symptoms and ocular surface damage showed significant improvement in both groups, while tear function improved only in G1. Conclusions: The data of this study indicate that rhNGF eye drops in both doses is safe and effective in improving symptoms and signs of DED. Randomised clinical trials are ongoing to confirm the therapeutic benefit of rhNGF in DED. Trial registration number: NCT02101281
Hadronic interactions of primary cosmic rays with the FLUKA code
The measured fluxes of secondary particles produced by the interactions of
cosmic rays with the astronomical environment represent a powerful tool to
infer some properties of primary cosmic rays. In this work we investigate the
production of secondary particles in inelastic hadronic interactions between
several cosmic rays species of projectiles and different target nuclei of the
interstellar medium. The yields of secondary particles have been calculated
with the FLUKA simulation package, that provides with very good accuracy the
energy distributions of secondary products in a large energy range. An
application to the propagation and production of secondaries in the Galaxy is
presented.Comment: 8 pages, 4 figures; Contribution to the 34th International Cosmic Ray
Conference, July 30 to August 6, The Hague, Netherlands; fixing a typo in the
y-axis label of Fig.
Effect of ELF e.m. fields on metalloprotein redox-active sites
The peculiarity of the distribution and geometry of metallic ions in enzymes
pushed us to set the hypothesis that metallic ions in active-site act like tiny
antennas able to pick up very feeble e.m. signals. Enzymatic activity of Cu2+,
Zn2+ Superoxide Dismutase (SOD1) and Fe2+ Xanthine Oxidase (XO) has been
studied, following in vitro generation and removal of free radicals. We
observed that Superoxide radicals generation by XO is increased by a weak field
having the Larmor frequency fL of Fe2+ while the SOD1 kinetics is sensibly
reduced by exposure to a weak field having the frequency fL of Cu2+ ion.Comment: 18 pages, 4 figure
On Abelian Multi-Chern-Simons Field Theories
In this paper a class of multi-Chern-Simons field theories which is relevant
to the statistical mechanics of polymer systems is investigated. Motivated by
the problems which one encounters in the treatment of these theories, a general
procedure is presented to eliminate the Chern-Simons fields from their action.
In this way it has been possible to derive an expression of the partition
function of topologically linked polymers which depends explicitly on the
topological numbers and does not have intractable nonlocal terms as it happened
in previous approaches. The new formulation of multi-Chern-Simons field
theories is then used to remove and clarify some inconsistencies and
ambiguities which apparently affect field theoretical models of topologically
linked polymers. Finally, the limit of disentangled polymers is discussed.Comment: 18 pages, plain LaTe
Glueball operators and the microscopic approach to N=1 gauge theories
We explain how to generalize Nekrasov's microscopic approach to N=2 gauge
theories to the N=1 case, focusing on the typical example of the U(N) theory
with one adjoint chiral multiplet X and an arbitrary polynomial tree-level
superpotential Tr W(X). We provide a detailed analysis of the generalized
glueball operators and a non-perturbative discussion of the Dijkgraaf-Vafa
matrix model and of the generalized Konishi anomaly equations. We compute in
particular the non-trivial quantum corrections to the Virasoro operators and
algebra that generate these equations. We have performed explicit calculations
up to two instantons, that involve the next-to-leading order corrections in
Nekrasov's Omega-background.Comment: 38 pages, 1 figure and 1 appendix included; v2: typos and the list of
references corrected, version to appear in JHE
- …
