4,552 research outputs found

    Maternal fluoxetine exposure alters cortical hemodynamic and calcium response of offspring to somatosensory stimuli

    Get PDF
    Epidemiological studies have found an increased incidence of neurodevelopmental disorders in populations prenatally exposed to selective serotonin reuptake inhibitors (SSRIs). Optical imaging provides a minimally invasive way to determine if perinatal SSRI exposure has long-term effects on cortical function. Herein we probed the functional neuroimaging effects of perinatal SSRI exposure in a fluoxetine (FLX)-exposed mouse model. While resting-state homotopic contralateral functional connectivity was unperturbed, the evoked cortical response to forepaw stimulation was altered in FLX mice. The stimulated cortex showed decreased activity for FLX versus controls, by both hemodynamic responses [oxyhemoglobin (Hb

    The anticipation of events in time

    No full text
    Humans anticipate events signaled by sensory cues. It is commonly assumed that two uncertainty parameters modulate the brain's capacity to predict: the hazard rate (HR) of event probability and the uncertainty in time estimation which increases with elapsed time. We investigate both assumptions by presenting event probability density functions (PDFs) in each of three sensory modalities. We show that perceptual systems use the reciprocal PDF and not the HR to model event probability density. We also demonstrate that temporal uncertainty does not necessarily grow with elapsed time but can also diminish, depending on the event PDF. Previous research identified neuronal activity related to event probability in multiple levels of the cortical hierarchy (sensory (V4), association (LIP), motor and other areas) proposing the HR as an elementary neuronal computation. Our results—consistent across vision, audition, and somatosensation—suggest that the neurobiological implementation of event anticipation is based on a different, simpler and more stable computation than HR: the reciprocal PDF of events in time

    Simple de Sitter Solutions

    Get PDF
    We present a framework for de Sitter model building in type IIA string theory, illustrated with specific examples. We find metastable dS minima of the potential for moduli obtained from a compactification on a product of two Nil three-manifolds (which have negative scalar curvature) combined with orientifolds, branes, fractional Chern-Simons forms, and fluxes. As a discrete quantum number is taken large, the curvature, field strengths, inverse volume, and four dimensional string coupling become parametrically small, and the de Sitter Hubble scale can be tuned parametrically smaller than the scales of the moduli, KK, and winding mode masses. A subtle point in the construction is that although the curvature remains consistently weak, the circle fibers of the nilmanifolds become very small in this limit (though this is avoided in illustrative solutions at modest values of the parameters). In the simplest version of the construction, the heaviest moduli masses are parametrically of the same order as the lightest KK and winding masses. However, we provide a method for separating these marginally overlapping scales, and more generally the underlying supersymmetry of the model protects against large corrections to the low-energy moduli potential.Comment: 37 pages, harvmac big, 4 figures. v3: small correction

    A Method for Individual Source Brightness Estimation in Single- and Multi-band Data

    Full text link
    We present a method of reliably extracting the flux of individual sources from sky maps in the presence of noise and a source population in which number counts are a steeply falling function of flux. The method is an extension of a standard Bayesian procedure in the millimeter/submillimeter literature. As in the standard method, the prior applied to source flux measurements is derived from an estimate of the source counts as a function of flux, dN/dS. The key feature of the new method is that it enables reliable extraction of properties of individual sources, which previous methods in the literature do not. We first present the method for extracting individual source fluxes from data in a single observing band, then we extend the method to multiple bands, including prior information about the spectral behavior of the source population(s). The multi-band estimation technique is particularly relevant for classifying individual sources into populations according to their spectral behavior. We find that proper treatment of the correlated prior information between observing bands is key to avoiding significant biases in estimations of multi-band fluxes and spectral behavior, biases which lead to significant numbers of misclassified sources. We test the single- and multi-band versions of the method using simulated observations with observing parameters similar to that of the South Pole Telescope data used in Vieira, et al. (2010).Comment: 11 emulateapj pages, 3 figures, revised to match published versio

    Non-Einstein geometries in Chiral Gravity

    Get PDF
    We analyze the asymptotic solutions of Chiral Gravity (Topologically Massive Gravity at \mu l = 1 with Brown-Henneaux boundary conditions) focusing on non-Einstein metrics. A class of such solutions admits curvature singularities in the interior which are reflected as singularities or infinite bulk energy of the corresponding linear solutions. A non-linear solution is found exactly. The back-reaction induces a repulsion of geodesics and a shielding of the singularity by an event horizon but also introduces closed timelike curves.Comment: 11 pages, 3 figures. v2: references and comments on linear stability (Sect.2) adde

    Note on New Massive Gravity in AdS3AdS_3

    Full text link
    In this note we study the properties of linearized gravitational excitations in the new massive gravity theory in asymptotically AdS3AdS_3 spacetime and find that there is also a critical point for the mass parameter at which massive gravitons become massless as in topological massive gravity in AdS3AdS_3. However, at this critical point in the new massive gravity the energy of all branches of highest weight gravitons vanish and the central charges also vanish within the Brown-Henneaux boundary conditions. The new massive gravity in asymptotically AdS3AdS_3 spacetime seems to be trivial at this critical point under the Brown-Henneaux boundary conditions if the Brown-Henneaux boundary conditions can be consistent with this theory. At this point, the boundary conditions of log gravity may be preferred.Comment: v3 typos corrected, refs added, version to appear in JHE

    ASCA Observation of an X-Ray-Luminous Active Nucleus in Markarian 231

    Get PDF
    We have obtained a moderately long (100 kilosecond) ASCA observation of the Seyfert 1 galaxy Markarian 231, the most luminous of the local ultraluminous infrared galaxy (ULIRG) population. In the best-fitting model we do not see the X-ray source directly; the spectrum consists of a scattered power-law component and a reflection component, both of which have been absorbed by a column N_H \approx 3 X 10^(22)/cm^2. About 3/4 of the observed hard X-rays arise from the scattered component, reducing the equivalent width of the iron K alpha line. The implied ratio of 1-10 keV X-ray luminosity to bolometric luminosity, L_x/L_bol \sim 2%, is typical of Sy 1 galaxies and radio-quiet QSOs of comparable bolometric luminosities, and indicates that the bolometric luminosity is dominated by the AGN. Our estimate of the X-ray luminosity also moves Mrk 231 in line with the correlations found for AGN with extremely strong Fe II emission. A second source separated by about 2 arcminutes is also clearly detected, and contributes about 25% of the total flux.Comment: 11 pages, 3 figures; to appear in ApJ Letter

    Infrared 3-4 Micron Spectroscopic Investigations of a Large Sample of Nearby Ultraluminous Infrared Galaxies

    Full text link
    We present infrared L-band (3-4 micron) nuclear spectra of a large sample of nearby ultraluminous infrared galaxies (ULIRGs).ULIRGs classified optically as non-Seyferts (LINERs, HII-regions, and unclassified) are our main targets. Using the 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission and absorption features at 3.1 micron due to ice-covered dust and at 3.4 micron produced by bare carbonaceous dust, we search for signatures of powerful active galactic nuclei (AGNs) deeply buried along virtually all lines-of-sight. The 3.3 micron PAH emission, the signatures of starbursts, is detected in all but two non-Seyfert ULIRGs, but the estimated starburst magnitudes can account for only a small fraction of the infrared luminosities. Three LINER ULIRGs show spectra typical of almost pure buried AGNs, namely, strong absorption features with very small equivalent-width PAH emission. Besides these three sources, 14 LINER and 3 HII ULIRGs' nuclei show strong absorption features whose absolute optical depths suggest an energy source more centrally concentrated than the surrounding dust, such as a buried AGN. In total, 17 out of 27 (63%) LINER and 3 out of 13 (23%) HII ULIRGs' nuclei show some degree of evidence for powerful buried AGNs, suggesting that powerful buried AGNs may be more common in LINER ULIRGs than in HII ULIRGs. The evidence of AGNs is found in non-Seyfert ULIRGs with both warm and cool far-infrared colors. These spectra are compared with those of 15 ULIRGs' nuclei with optical Seyfert signatures taken for comparison.The overall spectral properties suggest that the total amount of dust around buried AGNs in non-Seyfert ULIRGs is systematically larger than that around AGNs in Seyfert 2 ULIRGs.Comment: 56 pages, 9 figures, accepted for publication in ApJ (20 January 2006, vol 637 issue
    corecore