4,552 research outputs found
Maternal fluoxetine exposure alters cortical hemodynamic and calcium response of offspring to somatosensory stimuli
Epidemiological studies have found an increased incidence of neurodevelopmental disorders in populations prenatally exposed to selective serotonin reuptake inhibitors (SSRIs). Optical imaging provides a minimally invasive way to determine if perinatal SSRI exposure has long-term effects on cortical function. Herein we probed the functional neuroimaging effects of perinatal SSRI exposure in a fluoxetine (FLX)-exposed mouse model. While resting-state homotopic contralateral functional connectivity was unperturbed, the evoked cortical response to forepaw stimulation was altered in FLX mice. The stimulated cortex showed decreased activity for FLX versus controls, by both hemodynamic responses [oxyhemoglobin (Hb
The anticipation of events in time
Humans anticipate events signaled by sensory cues. It is commonly assumed that two uncertainty parameters modulate the brain's capacity to predict: the hazard rate (HR) of event probability and the uncertainty in time estimation which increases with elapsed time. We investigate both assumptions by presenting event probability density functions (PDFs) in each of three sensory modalities. We show that perceptual systems use the reciprocal PDF and not the HR to model event probability density. We also demonstrate that temporal uncertainty does not necessarily grow with elapsed time but can also diminish, depending on the event PDF. Previous research identified neuronal activity related to event probability in multiple levels of the cortical hierarchy (sensory (V4), association (LIP), motor and other areas) proposing the HR as an elementary neuronal computation. Our results—consistent across vision, audition, and somatosensation—suggest that the neurobiological implementation of event anticipation is based on a different, simpler and more stable computation than HR: the reciprocal PDF of events in time
Simple de Sitter Solutions
We present a framework for de Sitter model building in type IIA string
theory, illustrated with specific examples. We find metastable dS minima of the
potential for moduli obtained from a compactification on a product of two Nil
three-manifolds (which have negative scalar curvature) combined with
orientifolds, branes, fractional Chern-Simons forms, and fluxes. As a discrete
quantum number is taken large, the curvature, field strengths, inverse volume,
and four dimensional string coupling become parametrically small, and the de
Sitter Hubble scale can be tuned parametrically smaller than the scales of the
moduli, KK, and winding mode masses. A subtle point in the construction is that
although the curvature remains consistently weak, the circle fibers of the
nilmanifolds become very small in this limit (though this is avoided in
illustrative solutions at modest values of the parameters). In the simplest
version of the construction, the heaviest moduli masses are parametrically of
the same order as the lightest KK and winding masses. However, we provide a
method for separating these marginally overlapping scales, and more generally
the underlying supersymmetry of the model protects against large corrections to
the low-energy moduli potential.Comment: 37 pages, harvmac big, 4 figures. v3: small correction
A Method for Individual Source Brightness Estimation in Single- and Multi-band Data
We present a method of reliably extracting the flux of individual sources
from sky maps in the presence of noise and a source population in which number
counts are a steeply falling function of flux. The method is an extension of a
standard Bayesian procedure in the millimeter/submillimeter literature. As in
the standard method, the prior applied to source flux measurements is derived
from an estimate of the source counts as a function of flux, dN/dS. The key
feature of the new method is that it enables reliable extraction of properties
of individual sources, which previous methods in the literature do not. We
first present the method for extracting individual source fluxes from data in a
single observing band, then we extend the method to multiple bands, including
prior information about the spectral behavior of the source population(s). The
multi-band estimation technique is particularly relevant for classifying
individual sources into populations according to their spectral behavior. We
find that proper treatment of the correlated prior information between
observing bands is key to avoiding significant biases in estimations of
multi-band fluxes and spectral behavior, biases which lead to significant
numbers of misclassified sources. We test the single- and multi-band versions
of the method using simulated observations with observing parameters similar to
that of the South Pole Telescope data used in Vieira, et al. (2010).Comment: 11 emulateapj pages, 3 figures, revised to match published versio
Non-Einstein geometries in Chiral Gravity
We analyze the asymptotic solutions of Chiral Gravity (Topologically Massive
Gravity at \mu l = 1 with Brown-Henneaux boundary conditions) focusing on
non-Einstein metrics. A class of such solutions admits curvature singularities
in the interior which are reflected as singularities or infinite bulk energy of
the corresponding linear solutions. A non-linear solution is found exactly. The
back-reaction induces a repulsion of geodesics and a shielding of the
singularity by an event horizon but also introduces closed timelike curves.Comment: 11 pages, 3 figures. v2: references and comments on linear stability
(Sect.2) adde
Note on New Massive Gravity in
In this note we study the properties of linearized gravitational excitations
in the new massive gravity theory in asymptotically spacetime and find
that there is also a critical point for the mass parameter at which massive
gravitons become massless as in topological massive gravity in .
However, at this critical point in the new massive gravity the energy of all
branches of highest weight gravitons vanish and the central charges also vanish
within the Brown-Henneaux boundary conditions. The new massive gravity in
asymptotically spacetime seems to be trivial at this critical point
under the Brown-Henneaux boundary conditions if the Brown-Henneaux boundary
conditions can be consistent with this theory. At this point, the boundary
conditions of log gravity may be preferred.Comment: v3 typos corrected, refs added, version to appear in JHE
ASCA Observation of an X-Ray-Luminous Active Nucleus in Markarian 231
We have obtained a moderately long (100 kilosecond) ASCA observation of the
Seyfert 1 galaxy Markarian 231, the most luminous of the local ultraluminous
infrared galaxy (ULIRG) population. In the best-fitting model we do not see the
X-ray source directly; the spectrum consists of a scattered power-law component
and a reflection component, both of which have been absorbed by a column N_H
\approx 3 X 10^(22)/cm^2. About 3/4 of the observed hard X-rays arise from the
scattered component, reducing the equivalent width of the iron K alpha line.
The implied ratio of 1-10 keV X-ray luminosity to bolometric luminosity,
L_x/L_bol \sim 2%, is typical of Sy 1 galaxies and radio-quiet QSOs of
comparable bolometric luminosities, and indicates that the bolometric
luminosity is dominated by the AGN. Our estimate of the X-ray luminosity also
moves Mrk 231 in line with the correlations found for AGN with extremely strong
Fe II emission. A second source separated by about 2 arcminutes is also clearly
detected, and contributes about 25% of the total flux.Comment: 11 pages, 3 figures; to appear in ApJ Letter
Infrared 3-4 Micron Spectroscopic Investigations of a Large Sample of Nearby Ultraluminous Infrared Galaxies
We present infrared L-band (3-4 micron) nuclear spectra of a large sample of
nearby ultraluminous infrared galaxies (ULIRGs).ULIRGs classified optically as
non-Seyferts (LINERs, HII-regions, and unclassified) are our main targets.
Using the 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission and
absorption features at 3.1 micron due to ice-covered dust and at 3.4 micron
produced by bare carbonaceous dust, we search for signatures of powerful active
galactic nuclei (AGNs) deeply buried along virtually all lines-of-sight. The
3.3 micron PAH emission, the signatures of starbursts, is detected in all but
two non-Seyfert ULIRGs, but the estimated starburst magnitudes can account for
only a small fraction of the infrared luminosities. Three LINER ULIRGs show
spectra typical of almost pure buried AGNs, namely, strong absorption features
with very small equivalent-width PAH emission. Besides these three sources, 14
LINER and 3 HII ULIRGs' nuclei show strong absorption features whose absolute
optical depths suggest an energy source more centrally concentrated than the
surrounding dust, such as a buried AGN. In total, 17 out of 27 (63%) LINER and
3 out of 13 (23%) HII ULIRGs' nuclei show some degree of evidence for powerful
buried AGNs, suggesting that powerful buried AGNs may be more common in LINER
ULIRGs than in HII ULIRGs. The evidence of AGNs is found in non-Seyfert ULIRGs
with both warm and cool far-infrared colors. These spectra are compared with
those of 15 ULIRGs' nuclei with optical Seyfert signatures taken for
comparison.The overall spectral properties suggest that the total amount of
dust around buried AGNs in non-Seyfert ULIRGs is systematically larger than
that around AGNs in Seyfert 2 ULIRGs.Comment: 56 pages, 9 figures, accepted for publication in ApJ (20 January
2006, vol 637 issue
- …
