46,230 research outputs found
Daily Scheduled High Fat Meals Moderately Entrain Behavioral Anticipatory Activity, Body Temperature, and Hypothalamic c-Fos Activation
When fed in restricted amounts, rodents show robust activity in the hours preceding expected meal delivery. This process, termed food anticipatory activity (FAA), is independent of the light-entrained clock, the suprachiasmatic nucleus, yet beyond this basic observation there is little agreement on the neuronal underpinnings of FAA. One complication in studying FAA using a calorie restriction model is that much of the brain is activated in response to this strong hunger signal. Thus, daily timed access to palatable meals in the presence of continuous access to standard chow has been employed as a model to study FAA in rats. In order to exploit the extensive genetic resources available in the murine system we extended this model to mice, which will anticipate rodent high fat diet but not chocolate or other sweet daily meals (Hsu, Patton, Mistlberger, and Steele; 2010, PLoS ONE e12903). In this study we test additional fatty meals, including peanut butter and cheese, both of which induced modest FAA. Measurement of core body temperature revealed a moderate preprandial increase in temperature in mice fed high fat diet but entrainment due to handling complicated interpretation of these results. Finally, we examined activation patterns of neurons by immunostaining for the immediate early gene c-Fos and observed a modest amount of entrainment of gene expression in the hypothalamus of mice fed a daily fatty palatable meal
Improved table for cutting and welding
Welding table covered with parallel inverted steel angles improves metal torch cutting of various types and thicknesses
Boundary conditions for free surface inlet and outlet\ud problems
We investigate and compare the boundary conditions that are to be applied to free surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well-known that the flux scales with Ca2/3, but this classical result is nonuniform as the contact angle approaches . By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed
A note on oblique water entry
An apparently minor error in Howison, Ockendon & Oliver (J. Eng. Math. 48:321–337, 2004) obscured the fact that the points at which the free surface turns over in the solution of the Wagner model for the oblique impact of a two-dimensional body are directly related to the turnover points in the equivalent normal impact problem. This note corrects some results given in Howison, Ockendon & Oliver (2004) and discusses the implications for the applicability of the Wagner\ud
model
Visualizing Basic Nuclear Reactions
There are few instructional tools available to teach basic nuclear reactions to beginning students. The activity described in this paper can be used to help students visualize and write basic nuclear reactions such as alpha, beta, and positron decay, as well as electron capture. These reactions are represented using the technology of thermochromic paints, which either change color or turn colorless depending upon the temperature. By using a special thermochromic paint that turns colorless upon heating, students are able to visualize nuclear interactions. For instance, when positron decay occurs, the object depicting a proton will decay into a neutron by the application of heat. In order to avoid confusion, the heating instrument is referred to as a time gun. This paper includes the details of preparing and incorporating the activity into the classroom environment
How red is a quantum black hole?
Radiating black holes pose a number of puzzles for semiclassical and quantum
gravity. These include the transplanckian problem -- the nearly infinite
energies of Hawking particles created near the horizon, and the final state of
evaporation. A definitive resolution of these questions likely requires robust
inputs from quantum gravity. We argue that one such input is a quantum bound on
curvature. We show how this leads to an upper limit on the redshift of a
Hawking emitted particle, to a maximum temperature for a black hole, and to the
prediction of a Planck scale remnant.Comment: 3 pages, essay for the Gravity Research Foundatio
Constructing a gazebo: supporting teamwork in a tightly coupled, distributed task in virtual reality
Many tasks require teamwork. Team members may work concurrently, but there must be some occasions of coming together. Collaborative virtual environments (CVEs) allow distributed teams to come together across distance to share a task. Studies of CVE systems have tended to focus on the sense of presence or copresence with other people. They have avoided studying close interaction between us-ers, such as the shared manipulation of objects, because CVEs suffer from inherent network delays and often have cumbersome user interfaces. Little is known about the ef-fectiveness of collaboration in tasks requiring various forms of object sharing and, in particular, the concurrent manipu-lation of objects.
This paper investigates the effectiveness of supporting teamwork among a geographically distributed group in a task that requires the shared manipulation of objects. To complete the task, users must share objects through con-current manipulation of both the same and distinct at-tributes. The effectiveness of teamwork is measured in terms of time taken to achieve each step, as well as the impression of users. The effect of interface is examined by comparing various combinations of walk-in cubic immersive projection technology (IPT) displays and desktop devices
HST imaging of hyperluminous infrared galaxies
We present HST WFPC2 I band imaging for a sample of 9 Hyperluminous Infrared
Galaxies spanning a redshift range 0.45 < z < 1.34. Three of the sample have
morphologies showing evidence for interactions, six are QSOs. Host galaxies in
the QSOs are reliably detected out to z ~ 0.8. The detected QSO host galaxies
have an elliptical morphology with scalelengths spanning 6.5 < r_{e}(Kpc) < 88
and absolute k corrected magnitudes spanning -24.5 < M_{I} < -25.2. There is no
clear correlation between the IR power source and the optical morphology. None
of the sources in the sample, including F15307+3252, show any evidence for
gravitational lensing. We infer that the IR luminosities are thus real. Based
on these results, and previous studies of HLIRGs, we conclude that this class
of object is broadly consistent with being a simple extrapolation of the ULIRG
population to higher luminosities; ULIRGs being mainly violently interacting
systems powered by starbursts and/or AGN. Only a small number of sources whose
infrared luminosities exceed 10^{13}Lsun are intrinsically less luminous
objects which have been boosted by gravitational lensing.Comment: 16 Pages. Accepted for publication in MNRA
Quantum transport on small-world networks: A continuous-time quantum walk approach
We consider the quantum mechanical transport of (coherent) excitons on
small-world networks (SWN). The SWN are build from a one-dimensional ring of N
nodes by randomly introducing B additional bonds between them. The exciton
dynamics is modeled by continuous-time quantum walks and we evaluate
numerically the ensemble averaged transition probability to reach any node of
the network from the initially excited one. For sufficiently large B we find
that the quantum mechanical transport through the SWN is, first, very fast,
given that the limiting value of the transition probability is reached very
quickly; second, that the transport does not lead to equipartition, given that
on average the exciton is most likely to be found at the initial node.Comment: 8 pages, 8 figures (high quality figures available upon request
- …
