62,184 research outputs found
A MOSAIC of methods: Improving ortholog detection through integration of algorithmic diversity
Ortholog detection (OD) is a critical step for comparative genomic analysis
of protein-coding sequences. In this paper, we begin with a comprehensive
comparison of four popular, methodologically diverse OD methods: MultiParanoid,
Blat, Multiz, and OMA. In head-to-head comparisons, these methods are shown to
significantly outperform one another 12-30% of the time. This high
complementarity motivates the presentation of the first tool for integrating
methodologically diverse OD methods. We term this program MOSAIC, or Multiple
Orthologous Sequence Analysis and Integration by Cluster optimization. Relative
to component and competing methods, we demonstrate that MOSAIC more than
quintuples the number of alignments for which all species are present, while
simultaneously maintaining or improving functional-, phylogenetic-, and
sequence identity-based measures of ortholog quality. Further, we demonstrate
that this improvement in alignment quality yields 40-280% more confidently
aligned sites. Combined, these factors translate to higher estimated levels of
overall conservation, while at the same time allowing for the detection of up
to 180% more positively selected sites. MOSAIC is available as python package.
MOSAIC alignments, source code, and full documentation are available at
http://pythonhosted.org/bio-MOSAIC
Mixtures of Common Skew-t Factor Analyzers
A mixture of common skew-t factor analyzers model is introduced for
model-based clustering of high-dimensional data. By assuming common component
factor loadings, this model allows clustering to be performed in the presence
of a large number of mixture components or when the number of dimensions is too
large to be well-modelled by the mixtures of factor analyzers model or a
variant thereof. Furthermore, assuming that the component densities follow a
skew-t distribution allows robust clustering of skewed data. The alternating
expectation-conditional maximization algorithm is employed for parameter
estimation. We demonstrate excellent clustering performance when our model is
applied to real and simulated data.This paper marks the first time that skewed
common factors have been used
Design of two-dimensional particle assemblies using isotropic pair interactions with an attractive well
Using ground-state and relative-entropy based inverse design strategies,
isotropic interactions with an attractive well are determined to stabilize and
promote as- sembly of particles into two-dimensional square, honeycomb, and
kagome lattices. The design rules inferred from these results are discussed and
validated in the dis- covery of interactions that favor assembly of the highly
open truncated-square and truncated-hexagonal lattices.Comment: 11 pages, 5 figures and supplemental materia
Constructing a gazebo: supporting teamwork in a tightly coupled, distributed task in virtual reality
Many tasks require teamwork. Team members may work concurrently, but there must be some occasions of coming together. Collaborative virtual environments (CVEs) allow distributed teams to come together across distance to share a task. Studies of CVE systems have tended to focus on the sense of presence or copresence with other people. They have avoided studying close interaction between us-ers, such as the shared manipulation of objects, because CVEs suffer from inherent network delays and often have cumbersome user interfaces. Little is known about the ef-fectiveness of collaboration in tasks requiring various forms of object sharing and, in particular, the concurrent manipu-lation of objects.
This paper investigates the effectiveness of supporting teamwork among a geographically distributed group in a task that requires the shared manipulation of objects. To complete the task, users must share objects through con-current manipulation of both the same and distinct at-tributes. The effectiveness of teamwork is measured in terms of time taken to achieve each step, as well as the impression of users. The effect of interface is examined by comparing various combinations of walk-in cubic immersive projection technology (IPT) displays and desktop devices
Development of explosive welding techniques for fabrication of regeneratively cooled thrust chambers for large rocket engine requirements Final report, 28 Jun. 1967 - 15 Sep. 1970
Explosive welding techniques in fabricating regeneratively cooled thrust chambers for large rocket engine requirements including ultrasonic inspection, metallography, and burst testin
- …
