2,776 research outputs found
Exact two-qubit universal quantum circuit
We provide an analytic way to implement any arbitrary two-qubit unitary
operation, given an entangling two-qubit gate together with local gates. This
is shown to provide explicit construction of a universal quantum circuit that
exactly simulates arbitrary two-qubit operations in SU(4). Each block in this
circuit is given in a closed form solution. We also provide a uniform upper
bound of the applications of the given entangling gates, and find that exactly
half of all the Controlled-Unitary gates satisfy the same upper bound as the
CNOT gate. These results allow for the efficient implementation of operations
in SU(4) required for both quantum computation and quantum simulation.Comment: 5 page
Anisotropic Local Stress and Particle Hopping in a Deeply Supercooled Liquid
The origin of the microscopic motions that lead to stress relaxation in
deeply supercooled liquid remains unclear. We show that in such a liquid the
stress relaxation is locally anisotropic which can serve as the driving force
for the hopping of the system on its free energy surface. However, not all
hopping are equally effective in relaxing the local stress, suggesting that
diffusion can decouple from viscosity even at local level. On the other hand,
orientational relaxation is found to be always coupled to stress relaxation.Comment: 4 pages, 3 figure
Energy landscape of a Lennard-Jones liquid: Statistics of stationary points
Molecular dynamics simulations are used to generate an ensemble of saddles of
the potential energy of a Lennard-Jones liquid. Classifying all extrema by
their potential energy u and number of unstable directions k, a well defined
relation k(u) is revealed. The degree of instability of typical stationary
points vanishes at a threshold potential energy, which lies above the energy of
the lowest glassy minima of the system. The energies of the inherent states, as
obtained by the Stillinger-Weber method, approach the threshold energy at a
temperature close to the mode-coupling transition temperature Tc.Comment: 4 RevTeX pages, 6 eps figures. Revised versio
Liquid Limits: The Glass Transition and Liquid-Gas Spinodal Boundaries of Metastable Liquids
The liquid-gas spinodal and the glass transition define ultimate boundaries
beyond which substances cannot exist as (stable or metastable) liquids. The
relation between these limits is analyzed {\it via} computer simulations of a
model liquid. The results obtained indicate that the liquid - gas spinodal and
the glass transition lines intersect at a finite temperature, implying a glass
- gas mechanical instability locus at low temperatures. The glass transition
lines obtained by thermodynamic and dynamic criteria agree very well with each
other.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let
Computer Simulation Study of the Phase Behavior and Structural Relaxation in a Gel-Former Modeled by Three Body Interactions
We report a computer simulation study of a model gel-former obtained by
modifying the three-body interactions of the Stillinger-Weber potential for
silicon. This modification reduces the average coordination number and
consequently shifts the liquid-gas phase coexistence curve to low densities,
thus facilitating the formation of gels without phase separation. At low
temperatures and densities, the structure of the system is characterized by the
presence of long linear chains interconnected by a small number of three
coordinated junctions at random locations. At small wave-vectors the static
structure factor shows a non-monotonic dependence on temperature, a behavior
which is due to the competition between the percolation transition of the
particles and the stiffening of the formed chains. We compare in detail the
relaxation dynamics of the system as obtained from molecular dynamics with the
one obtained from Monte Carlo dynamics. We find that the bond correlation
function displays stretched exponential behavior at moderately low temperatures
and densities, but exponential relaxation at low temperatures. The bond
lifetime shows an Arrhenius behavior, independent of the microscopic dynamics.
For the molecular dynamics at low temperatures, the mean squared displacement
and the (coherent and incoherent) intermediate scattering function display at
intermediate times a dynamics with ballistic character and we show that this
leads to compressed exponential relaxation. For the Monte Carlo dynamics we
find always an exponential or stretched exponential relaxation. Thus we
conclude that the compressed exponential relaxation observed in experiments is
due to the out-of-equilibrium dynamics
Metastable configurations of spin models on random graphs
One-flip stable configurations of an Ising-model on a random graph with
fluctuating connectivity are examined. In order to perform the quenched average
of the number of stable configurations we introduce a global order-parameter
function with two arguments. The analytical results are compared with numerical
simulations.Comment: 11 pages Revtex, minor changes, to appear in Phys. Rev.
Spectral Statistics of Instantaneous Normal Modes in Liquids and Random Matrices
We study the statistical properties of eigenvalues of the Hessian matrix
(matrix of second derivatives of the potential energy) for a
classical atomic liquid, and compare these properties with predictions for
random matrix models (RMM). The eigenvalue spectra (the Instantaneous Normal
Mode or INM spectra) are evaluated numerically for configurations generated by
molecular dynamics simulations. We find that distribution of spacings between
nearest neighbor eigenvalues, s, obeys quite well the Wigner prediction , with the agreement being better for higher densities at fixed
temperature. The deviations display a correlation with the number of localized
eigenstates (normal modes) in the liquid; there are fewer localized states at
higher densities which we quantify by calculating the participation ratios of
the normal modes. We confirm this observation by calculating the spacing
distribution for parts of the INM spectra with high participation ratios,
obtaining greater conformity with the Wigner form. We also calculate the
spectral rigidity and find a substantial dependence on the density of the
liquid.Comment: To appear in Phys. Rev. E; 10 pages, 6 figure
Low-temperature structural model of hcp solid C
We report intermolecular potential-energy calculations for solid C_ and
determine the optimum static orientations of the molecules at low temperature;
we find them to be consistent with the monoclinic structural model proposed by
us in an earlier report [Solid State Commun. {\bf 105), 247 (1998)]. This model
indicates that the C_5 axis of the molecule is tilted by an angle 18^o
from the monoclinic b axis in contrast with the molecular orientation proposed
by Verheijen {\it et al.} [J. Chem. Phys. {\bf 166}, 287 (1992)] where the C_5
axis is parallel to the monoclinic b axis. In this calculation we have
incorporated the effective bond charge Coulomb potential together with the
Lennard-Jones potential between the molecule at the origin of the monoclinic
unit cell and its six nearest neighbours, three above and three below. The
minimum energy configuration for the molecular orientations turns out to be at
=18^o, =8^o, and =5^o, where , , and
define the molecular orientations.Comment: ReVTeX (4 pages) + 2 PostScript figure
Efficient Passive ICS Device Discovery and Identification by MAC Address Correlation
Owing to a growing number of attacks, the assessment of Industrial Control
Systems (ICSs) has gained in importance. An integral part of an assessment is
the creation of a detailed inventory of all connected devices, enabling
vulnerability evaluations. For this purpose, scans of networks are crucial.
Active scanning, which generates irregular traffic, is a method to get an
overview of connected and active devices. Since such additional traffic may
lead to an unexpected behavior of devices, active scanning methods should be
avoided in critical infrastructure networks. In such cases, passive network
monitoring offers an alternative, which is often used in conjunction with
complex deep-packet inspection techniques. There are very few publications on
lightweight passive scanning methodologies for industrial networks. In this
paper, we propose a lightweight passive network monitoring technique using an
efficient Media Access Control (MAC) address-based identification of industrial
devices. Based on an incomplete set of known MAC address to device
associations, the presented method can guess correct device and vendor
information. Proving the feasibility of the method, an implementation is also
introduced and evaluated regarding its efficiency. The feasibility of
predicting a specific device/vendor combination is demonstrated by having
similar devices in the database. In our ICS testbed, we reached a host
discovery rate of 100% at an identification rate of more than 66%,
outperforming the results of existing tools.Comment: http://dx.doi.org/10.14236/ewic/ICS2018.
- …
