954 research outputs found
Cold collision shift cancelation and inelastic scattering in a Yb optical lattice clock
Recently, p-wave cold collisions were shown to dominate the density-dependent
shift of the clock transition frequency in a 171Yb optical lattice clock. Here
we demonstrate that by operating such a system at the proper excitation
fraction, the cold collision shift is canceled below the 5x10^{-18} fractional
frequency level. We report inelastic two-body loss rates for 3P0-3P0 and
1S0-3P0 scattering. We also measure interaction shifts in an unpolarized atomic
sample. Collision measurements for this spin-1/2 171Yb system are relevant for
high performance optical clocks as well as strongly-interacting systems for
quantum information and quantum simulation applications
BEC-BCS Crossover of a Trapped Two-Component Fermi Gas with Unequal Masses
We determine the energetically lowest lying states in the BEC-BCS crossover
regime of s-wave interacting two-component Fermi gases under harmonic
confinement by solving the many-body Schrodinger equation using two distinct
approaches. Essentially exact basis set expansion techniques are applied to
determine the energy spectrum of systems with N=4 fermions. Fixed-node
diffusion Monte Carlo methods are applied to systems with up to N=20 fermions,
and a discussion of different guiding functions used in the Monte Carlo
approach to impose the proper symmetry of the fermionic system is presented.
The energies are calculated as a function of the s-wave scattering length a_s
for N=2-20 fermions and different mass ratios \kappa of the two species. On the
BEC and BCS sides, our energies agree with analytically-determined first-order
correction terms. We extract the scattering length and the effective range of
the dimer-dimer system up to \kappa = 20. Our energies for the
strongly-interacting trapped system in the unitarity regime show no shell
structure, and are well described by a simple expression, whose functional form
can be derived using the local density approximation, with one or two
parameters. The universal parameter \xi for the trapped system for various
\kappa is determined, and comparisons with results for the homogeneous system
are presented.Comment: 11 pages, 6 figures, extended versio
Universality in Four-Boson Systems
We report recent advances on the study of universal weakly bound four-boson
states from the solutions of the Faddeev-Yakubovsky equations with zero-range
two-body interactions. In particular, we present the correlation between the
energies of successive tetramers between two neighbor Efimov trimers and
compare it to recent finite range potential model calculations. We provide
further results on the large momentum structure of the tetramer wave function,
where the four-body scale, introduced in the regularization procedure of the
bound state equations in momentum space, is clearly manifested. The results we
are presenting confirm a previous conjecture on a four-body scaling behavior,
which is independent of the three-body one. We show that the correlation
between the positions of two successive resonant four-boson recombination peaks
are consistent with recent data, as well as with recent calculations close to
the unitary limit. Systematic deviations suggest the relevance of range
corrections.Comment: Accepted for publication in special issue of Few-Body Systems devoted
to the Sixth Workshop on the Critical Stability of Quantum Few-Body Systems,
October 2011, Erice, Sicily, Ital
Hyperspherical Description of the Degenerate Fermi Gas: S-wave Interactions
We present a unique theoretical description of the physics of the spherically
trapped -atom degenerate Fermi gas (DFG) at zero temperature based on an
ordinary Schr\"{o}dinger equation with a microscopic, two body interaction
potential. With a careful choice of coordinates and a variational wavefunction,
the many body Schr\"{o}dinger equation can be accurately described by a
\emph{linear}, one dimensional effective Schr\"{o}dinger equation in a single
collective coordinate, the rms radius of the gas. Comparisons of the energy,
rms radius and peak density of ground state energy are made to those predicted
by Hartree-Fock (HF). Also the lowest radial excitation frequency (the
breathing mode frequency) agrees with a sum rule calculation, but deviates from
a HF prediction
Spectral Energy Distributions of starburst galaxies in the 900-1200 A range
We present the 970-1175 A spectral energy distributions (SEDs) of 12
starburst galaxies observed with the Far Ultraviolet Spectroscopic Explorer
FUSE. We take benefit of the high spectral resolution of FUSE to estimate a
continuum as much as possible unaffected by the interstellar lines. The
continuum is rather flat with, in few cases, a decrease at lambda <~1050 A, the
amplitude of which being correlated with various indicators of the dust
extinction. The far-UV SEDs are compared with synthetic population models. The
galaxies with almost no extinction have a SED consistent with an on-going star
formation over some Myrs. We derive a mean dust attenuation law in the
wavelength range 965-1140 A by comparing the SED of obscured galaxies to an
empirical dust-free SED. The extinction is nearly constant longward of 1040 A
but rises at shorter wavelengths. We compare our results with other studies of
the extinction for galaxies and stars in this wavelength range.Comment: 11 pages, 6 postscript figures, accepted for publication in Astronomy
& Astrophysic
A quantum many-body spin system in an optical lattice clock
Strongly interacting quantum many-body systems arise in many areas of physics, but their
complexity generally precludes exact solutions to their dynamics. We explored a strongly
interacting two-level system formed by the clock states in ^(87)Sr as a laboratory for the study of
quantum many-body effects. Our collective spin measurements reveal signatures of the
development of many-body correlations during the dynamical evolution. We derived a many-body
Hamiltonian that describes the experimental observation of atomic spin coherence decay,
density-dependent frequency shifts, severely distorted lineshapes, and correlated spin noise. These
investigations open the door to further explorations of quantum many-body effects and
entanglement through use of highly coherent and precisely controlled optical lattice clocks
Ultraviolet and Optical Observations of OB Associations and Field Stars in the Southwest Region of the Large Magellanic Cloud
Using photometry from the Ultraviolet Imaging Telescope (UIT) and photometry
and spectroscopy from three ground-based optical datasets we have analyzed the
stellar content of OB associations and field areas in and around the regions N
79, N 81, N 83, and N 94 in the LMC. We compare data for the OB association
Lucke-Hodge 2 (LH 2) to determine how strongly the initial mass function (IMF)
may depend on different photometric reductions and calibrations. We also
correct for the background contribution of field stars, showing the importance
of correcting for field star contamination in determinations of the IMF of star
formation regions. It is possible that even in the case of an universal IMF,
the variability of the density of background stars could be the dominant factor
creating the differences between calculated IMFs for OB associations.
We have also combined the UIT data with the Magellanic Cloud Photometric
Survey to study the distribution of the candidate O-type stars in the field. We
find a significant fraction, roughly half, of the candidate O-type stars are
found in field regions, far from any obvious OB associations. These stars are
greater than 2 arcmin (30 pc) from the boundaries of existing OB associations
in the region, which is a distance greater than most O-type stars with typical
dispersion velocities will travel in their lifetimes. The origin of these
massive field stars (either as runaways, members of low-density star-forming
regions, or examples of isolated massive star formation) will have to be
determined by further observations and analysis.Comment: 16 pages, 10 figures (19 PostScript files), tabular data + header
file for Table 1 (2 ASCII files). File format is LaTeX/AASTeX v.502 using the
emulateapj5 preprint style (included). Also available at
http://www.boulder.swri.edu/~joel/papers.html . To appear in the February
2001 issue of the Astronomical Journa
Interaction-dependent photon-assisted tunneling in optical lattices: a quantum simulator of strongly-correlated electrons and dynamical gauge fields
We introduce a scheme that combines photon-assisted tunneling by a moving optical lattice with strong Hubbard interactions, and allows for the quantum simulation of paradigmatic quantum many-body models. We show that, in a certain regime, this quantum simulator yields an effective Hubbard Hamiltonian with tunable bond-charge interactions, a model studied in the context of strongly-correlated electrons. In a different regime, we show how to exploit a correlated destruction of tunneling to explore Nagaoka ferromagnetism at finite Hubbard repulsion. By changing the photon-assisted tunneling parameters, we can also obtain a t-J model with independently controllable tunneling t, super-exchange interaction J, and even a Heisenberg-Ising anisotropy. Hence, the full phase diagram of this paradigmatic model becomes accessible to cold-atom experiments, departing from the region t _ J allowed by standard single-band Hubbard Hamiltonians in the strong-repulsion limit. We finally show that, by generalizing the photon-assisted tunneling scheme, the quantum simulator yields models of dynamical Gauge fields, where atoms of a given electronic state dress the tunneling of the atoms with a different internal state, leading to Peierls phases that mimic a dynamical magnetic field
Comparing Galaxy Morphology at Ultraviolet and Optical Wavelengths
We have undertaken an imaging survey of 34 nearby galaxies in far-ultraviolet
(FUV, ~1500A) and optical (UBVRI) passbands to characterize galaxy morphology
as a function of wavelength. This sample, which includes a range of classical
Hubble types from elliptical to irregular with emphasis on spirals at low
inclination angle, provides a valuable database for comparison with images of
high-z galaxies whose FUV light is redshifted into the optical and near-
infrared bands. Ultraviolet data are from the UIT Astro-2 mission. We present
images and surface brightness profiles for each galaxy, and we discuss the
wavelength-dependence of morphology for different Hubble types in the context
of understanding high-z objects. In general, the dominance of young stars in
the FUV produces the patchy appearance of a morphological type later than that
inferred from optical images. Prominent rings and circumnuclear star formation
regions are clearly evident in FUV images of spirals, while bulges, bars, and
old, red stellar disks are faint to invisible at these short wavelengths.
However, the magnitude of the change in apparent morphology ranges from
dramatic in early--type spirals with prominent optical bulges to slight in
late-type spirals and irregulars, in which young stars dominate both the UV and
optical emission. Starburst galaxies with centrally concentrated, symmetric
bursts display an apparent ``E/S0'' structure in the FUV, while starbursts
associated with rings or mergers produce a peculiar morphology. We briefly
discuss the inadequacy of the optically-defined Hubble sequence to describe FUV
galaxy images and estimate morphological k-corrections, and we suggest some
directions for future research with this dataset.Comment: Accepted for publication in the ApJS. 15 pages, 17 JPEG figures, 10
GIF figures. Paper and full resolution figures available at
http://nedwww.ipac.caltech.edu/level5/Kuchinski/frames.htm
Ultraviolet Imaging Observations of the cD Galaxy in Abell 1795: Further Evidence for Massive Star Formation in a Cooling Flow
We present images from the Ultraviolet Imaging Telescope of the Abell 1795
cluster of galaxies. We compare the cD galaxy morphology and photometry of
these data with those from existing archival and published data. The addition
of a far--UV color helps us to construct and test star formation model
scenarios for the sources of UV emission. Models of star formation with rates
in the range \sim5-20M_{\sun}yr indicate that the best fitting models
are those with continuous star formation or a recent ( Myr old) burst
superimposed on an old population. The presence of dust in the galaxy,
dramatically revealed by HST images complicates the interpretation of UV data.
However, we find that the broad--band UV/optical colors of this cD galaxy can
be reasonably matched by models using a Galactic form for the extinction law
with . We also briefly discuss other objects in the large UIT
field of view.Comment: To appear in the Astrophysical Journal. 14 AAS preprint style pages
plus 7 figure
- …
