2,935 research outputs found
Oral Cancer Awareness and its Determinants among a Selected Malaysian Population
Objective: To assess oral cancer awareness, its associated factors and related sources of information among a selected group of Malaysians. Methods: A cross-sectional survey was conducted on all Malaysian ethnic groups aged >= 15 years old at eight strategically chosen shopping malls within a two week time period. Data were analysed using chi-square tests and multiple logistic regression. Significance level was set at alpha<0.05. Results: Most (84.2%) respondents had heard of oral cancer. Smoking was the most (92.4%) recognized high risk habit. Similar levels of awareness were seen for unhealed ulcers (57.3%) and red/white patches (58.0%) as signs of oral cancer. Age, gender, ethnicity, marital status, education, occupation and income were significantly associated with oral cancer awareness (p<0.05). Conclusions: There was a general lack of awareness regarding the risk habits, early signs and symptoms, and the benefits of detecting this disease at an early stage. Mass media and health campaigns were the main sources of information about oral cancer. In our Malaysian population, gender and age were significantly associated with the awareness of early signs and symptoms and prevention of oral cancer, respectively.Article Link:
http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=POCPA9_2013_v14n3_195
Asymmetric magnetic reconnection with a flow shear and applications to the magnetopause
We perform a theoretical and numerical study of anti-parallel 2D magnetic
reconnection with asymmetries in the density and reconnecting magnetic field
strength in addition to a bulk flow shear across the reconnection site in the
plane of the reconnecting fields, which commonly occurs at planetary
magnetospheres. We predict the speed at which an isolated X-line is convected
by the flow, the reconnection rate, and the critical flow speed at which
reconnection no longer takes place for arbitrary reconnecting magnetic field
strengths, densities, and upstream flow speeds, and confirm the results with
two-fluid numerical simulations. The predictions and simulation results counter
the prevailing model of reconnection at Earth's dayside magnetopause which says
reconnection occurs with a stationary X-line for sub-Alfvenic magnetosheath
flow, reconnection occurs but the X-line convects for magnetosheath flows
between the Alfven speed and double the Alfven speed, and reconnection does not
occur for magnetosheath flows greater than double the Alfven speed. We find
that X-line motion is governed by momentum conservation from the upstream
flows, which are weighted differently in asymmetric systems, so the X-line
convects for generic conditions including sub-Alfvenic upstream speeds. For the
reconnection rate, while the cutoff condition for symmetric reconnection is
that the difference in flows on the two sides of the reconnection site is twice
the Alfven speed, we find asymmetries cause the cutoff speed for asymmetric
reconnection to be higher than twice the asymmetric form of the Alfven speed.
The results compare favorably with an observation of reconnection at Earth's
polar cusps during a period of northward interplanetary magnetic field, where
reconnection occurs despite the magnetosheath flow speed being more than twice
the magnetosheath Alfven speed, the previously proposed suppression condition.Comment: 46 pages, 7 figures, abstract abridged here, accepted to Journal of
Geophysical Research - Space Physic
Particle-in-cell simulation study of the scaling of asymmetric magnetic reconnection with in-plane flow shear
We investigate magnetic reconnection in systems simultaneously containing
asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and
temperatures, and arbitrary in-plane bulk flow of plasma in the upstream
regions. Such configurations are common in the high-latitudes of Earth's
magnetopause and in tokamaks. We investigate the convection speed of the
X-line, the scaling of the reconnection rate, and the condition for which the
flow suppresses reconnection as a function of upstream flow speeds. We use
two-dimensional particle-in-cell simulations to capture the mixing of plasma in
the outflow regions better than is possible in fluid modeling. We perform
simulations with asymmetric magnetic fields, simulations with asymmetric
densities, and simulations with magnetopause-like parameters where both are
asymmetric. For flow speeds below the predicted cutoff velocity, we find good
scaling agreement with the theory presented in Doss et al., J.~Geophys.~Res.,
120, 7748 (2015). Applications to planetary magnetospheres, tokamaks, and the
solar wind are discussed.Comment: 17 pages, 4 figures, submitted to Physics of Plasma
Fast recovery from node compromise in wireless sensor networks
Wireless Sensor Networks (WSNs) are susceptible to a wide range of security attacks in hostile environments due to the limited processing and energy capabilities of sensor nodes. Consequently, the use of WSNs in mission critical applications requires reliable detection and fast recovery from these attacks. While much research has been devoted to detecting security attacks, very little attention has been paid yet to the recovery task. In this paper, we present a novel mechanism that is based on dynamic network reclustering and node reprogramming for recovering from node compromise. In response to node compromise, the proposed recovery approach reclusters the network excluding compromised nodes; thus allowing normal network operation while initiating node recovery procedures. We propose a novel reclustering algorithm that uses 2-hop neighbourhood information for this purpose. For node reprogramming we propose the modified Deluge protocol. The proposed node recovery mechanism is both decentralized and scalable. Moreover, we demonstrate through its implementation on a TelosB-based sensor network testbed that the proposed recovery method performs well in a low-resource WSN.<br /
Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model
We study the stochastic FitzHugh-Nagumo equations, modelling the dynamics of
neuronal action potentials, in parameter regimes characterised by mixed-mode
oscillations. The interspike time interval is related to the random number of
small-amplitude oscillations separating consecutive spikes. We prove that this
number has an asymptotically geometric distribution, whose parameter is related
to the principal eigenvalue of a substochastic Markov chain. We provide
rigorous bounds on this eigenvalue in the small-noise regime, and derive an
approximation of its dependence on the system's parameters for a large range of
noise intensities. This yields a precise description of the probability
distribution of observed mixed-mode patterns and interspike intervals.Comment: 36 page
Hybrid Method for Digits Recognition using Fixed-Frame Scores and Derived Pitch
This paper presents a procedure of frame normalization based on the traditional dynamic time warping (DTW) using the LPC coefficients. The redefined method is called as the DTW frame-fixing method (DTW-FF), it works by normalizing the word frames of the input against the
reference frames. The enthusiasm to this study is due to neural network limitation that entails a fix number of input nodes for when processing multiple inputs in parallel. Due to this problem, this research is initiated to reduce the amount of computation and complexity in a neural network by reducing the number of inputs into the network. In this study, dynamic warping process is used, in which local distance scores of the warping path are fixed and collected so that their scores are of equal number of frames. Also studied in this paper is the
consideration of pitch as a contributing feature to the speech recognition. Results showed a good performance and
improvement when using pitch along with DTW-FF feature.
The convergence rate between using the steepest gradient
descent is also compared to another method namely conjugate
gradient method. Convergence rate is also improved when
conjugate gradient method is introduced in the back-propagation algorithm
Phytochemical Screening and Antibacterial Activity of Aqueous and Methanolic Leaf Extracts of Two Medicinal Plants against Bovine Mastitis Bacterial Pathogens
Spathodea campanulata P. Beauv is extensively used in Indian traditional and folklore medicines to cure various human ailments. Tridax procumbens Linn is a tropically distributed medicinal plant. Antimicrobial activity of aqueous and methanol extracts of two plants were investigated by agar disc and well-diffusion method against bovine mastitis bacterial pathogens. The plant extracts showed inhibitory activity against the tested organisms. Phytochemical screening of the plant revealed the presence of tannins, flavonoids, saponins and alkaloids. The study scientifically validates the use of plant in traditional and ethnoveterinary medicine
Produção de acessos de mangarito em função do tamanho de mudas e níveis de adubação fosfada.
Com o objetivo de incrementar a produtividade foram avaliados dois acessos (CNPH 276 E CNPH 177), dois tamanhos de muda (tamanho pequeno - TP e muito pequeno - TPM) e doses de adubação fosfatada.Suplemento. Trabalho apresentado no 52. Congresso Brasileiro de Olericultura, Salvador, 2012
Neutrons from multiplicity-selected La-La and Nb-Nb collisions at 400A MeV and La-La collisions at 250A MeV
Triple-differential cross sections for neutrons from high-multiplicity La-La
collisions at 250 and 400 MeV per nucleon and Nb-Nb collisions at 400 MeV per
nucleon were measured at several polar angles as a function of the azimuthal
angle with respect to the reaction plane of the collision. The reaction plane
was determined by a transverse-velocity method with the capability of
identifying charged-particles with Z=1, Z=2, and Z > 2. The flow of neutrons
was extracted from the slope at mid-rapidity of the curve of the average
in-plane momentum vs the center-of-mass rapidity. The squeeze-out of the
participant neutrons was observed in a direction normal to the reaction plane
in the normalized momentum coordinates in the center-of-mass system.
Experimental results of the neutron squeeze-out were compared with BUU
calculations. The polar-angle dependence of the maximum azimuthal anisotropy
ratio was found to be insensitive to the mass of the colliding
nuclei and the beam energy. Comparison of the observed polar-angle dependence
of the maximum azimuthal anisotropy ratio with BUU calculations for
free neutrons revealed that is insensitive also to the
incompressibility modulus in the nuclear equation of state.Comment: ReVTeX, 16 pages, 17 figures. To be published in Physical Review
- …
