921 research outputs found
Gravitational wave forms for a three-body system in Lagrange's orbit: parameter determinations and a binary source test
Continuing work initiated in an earlier publication [Torigoe et al. Phys.
Rev. Lett. {\bf 102}, 251101 (2009)], gravitational wave forms for a three-body
system in Lagrange's orbit are considered especially in an analytic method.
First, we derive an expression of the three-body wave forms at the mass
quadrupole, octupole and current quadrupole orders. By using the expressions,
we solve a gravitational-wave {\it inverse} problem of determining the source
parameters to this particular configuration (three masses, a distance of the
source to an observer, and the orbital inclination angle to the line of sight)
through observations of the gravitational wave forms alone. For this purpose,
the chirp mass to a three-body system in the particular configuration is
expressed in terms of only the mass ratios by deleting initial angle positions.
We discuss also whether and how a binary source can be distinguished from a
three-body system in Lagrange's orbit or others.Comment: 21 pages, 3 figures, 1 table; text improved, typos corrected;
accepted for publication in PR
Inelastic Diffraction and Spectroscopy of Very Weakly Bound Clusters
We study the coherent inelastic diffraction of very weakly bound two body
clusters from a material transmission grating. We show that internal
transitions of the clusters can lead to new separate peaks in the diffraction
pattern whose angular positions determine the excitation energies. Using a
quantum mechanical approach to few body scattering theory we determine the
relative peak intensities for the diffraction of the van der Waals dimers
(D_2)_2 and H_2-D_2. Based on the results for these realistic examples we
discuss the possible applications and experimental challenges of this coherent
inelastic diffraction technique.Comment: 15 pages + 5 figures. J. Phys. B (in press
Good rotations
Numerical integrations in celestial mechanics often involve the repeated
computation of a rotation with a constant angle. A direct evaluation of these
rotations yields a linear drift of the distance to the origin. This is due to
roundoff in the representation of the sine s and cosine c of the angle theta.
In a computer, one generally gets c^2 + s^2 1, resulting in a mapping that
is slightly contracting or expanding. In the present paper we present a method
to find pairs of representable real numbers s and c such that c^2 + s^2 is as
close to 1 as possible. We show that this results in a drastic decrease of the
systematic error, making it negligible compared to the random error of other
operations. We also verify that this approach gives good results in a realistic
celestial mechanics integration.Comment: 24 pages, 3 figure
The spectroscopic orbit of Capella revisited
Context. Capella is among the few binary stars with two evolved giant
components. The hotter component is a chromospherically active star within the
Hertzsprung gap, while the cooler star is possibly helium-core burning. Aims.
The known inclination of the orbital plane from astrometry in combination with
precise radial velocities will allow very accurate masses to be determined for
the individual Capella stars. This will constrain their evolutionary stage and
possibly the role of the active star's magnetic field on the dynamical
evolution of the binary system. Methods. We obtained a total of 438
high-resolution \'echelle spectra during the years 2007-2010 and used the
measured velocities to recompute the orbital elements. Our double-lined orbital
solution yields average residuals of 64 m/s for the cool component and 297 m/s
for the more rapidly rotating hotter component. Results. The semi-amplitude of
the cool component is smaller by 0.045 km/s than the orbit determination of
Torres et al. from data taken during 1996-1999 but more precise by a factor of
5.5, while for the hotter component it is larger by 0.580 km/s and more precise
by a factor of 3.6. This corresponds to masses of 2.573\pm0.009 M_sun and
2.488\pm0.008 M_sun for the cool and hot component, respectively. Their
relative errors of 0.34% and 0.30% are about half of the values given in Torres
et al. for a combined literature- data solution but with absolute values
different by 4% and 2% for the two components, respectively. The mass ratio of
the system is therefore q = M_A/M_B = 0.9673 \pm 0.0020. Conclusions. Our orbit
is the most precise and also likely to be the most accurate ever obtained for
Capella
Gamma-ray emission from dark matter wakes of recoiled black holes
A new scenario for the emission of high-energy gamma-rays from dark matter
annihilation around massive black holes is presented. A black hole can leave
its parent halo, by means of gravitational radiation recoil, in a merger event
or in the asymmetric collapse of its progenitor star. A recoiled black hole
which moves on an almost-radial orbit outside the virial radius of its central
halo, in the cold dark matter background, reaches its apapsis in a finite time.
Near or at the apapsis passage, a high-density wake extending over a large
radius of influence, forms around the black hole. It is shown that significant
gamma-ray emission can result from the enhancement of neutralino annihilation
in these wakes. At its apapsis passage, a black hole is shown to produce a
flash of high-energy gamma-rays whose duration is determined by the mass of the
black hole and the redshift at which it is ejected. The ensemble of such black
holes in the Hubble volume is shown to produce a diffuse high-energy gamma-ray
background whose magnitude is compared to the diffuse emission from dark matter
haloes alone.Comment: version to appear in Astrophysical Journal letters (labels on Fig. 3
corrected
Rotational quenching rate coefficients for H_2 in collisions with H_2 from 2 to 10,000 K
Rate coefficients for rotational transitions in H_2 induced by H_2 impact are
presented. Extensive quantum mechanical coupled-channel calculations based on a
recently published (H_2)_2 potential energy surface were performed. The
potential energy surface used here is presumed to be more reliable than
surfaces used in previous work. Rotational transition cross sections with
initial levels J <= 8 were computed for collision energies ranging between
0.0001 and 2.5 eV, and the corresponding rate coefficients were calculated for
the temperature range 2 < T <10,000 K. In general, agreement with earlier
calculations, which were limited to 100-6000 K, is good though discrepancies
are found at the lowest and highest temperatures. Low-density-limit cooling
functions due to para- and ortho-H_2 collisions are obtained from the
collisional rate coefficients. Implications of the new results for non-thermal
H_2 rotational distributions in molecular regions are also investigated
The L723 low mass star forming protostellar system: resolving a double core
We present 1.35 mm SMA observations around the low-mass Class 0 source IRAS
19156+1906, at the the center of the L723 dark cloud. We detected emission from
dust as well as emission from H2CO, DCN and CN, which arise from two cores, SMA
1 and SMA 2, separated by 2.9" (880 AU). SMA 2 is associated with VLA 2. SiO
5-4 emission is detected, possibly tracing a region of interaction between the
dense envelope and the outflow. We modeled the dust and the H2CO emission from
the two cores: they have similar physical properties but SMA 2 has a larger
p-H2CO abundance than SMA 1. The p-H2CO abundances found are compatible with
the value of the outer part of the circumstellar envelopes associated with
Class 0 sources. SMA 2 is likely more evolved than SMA 1. The kinematics of the
two sources show marginal evidence of infall and rotation motions. The mass
detected by the SMA observation, which trace scales of ~1000 AU, is only a
small fraction of the mass contained in the large scale molecular envelope,
which suggests that L723 is still in a very early phase of star formation.
Despite the apparent quiescent nature of the L723, fragmentation is occurring
at the center of the cloud at different scales. Thus, at 1000 AU the cloud has
fragmented in two cores, SMA 1 and SMA 2. At the same time, at least one of
these cores, SMA 2, has undergone additional fragmentation at scales of 150 AU,
forming a multiple stellar system.Comment: 35 pages, 15 figures. Accepted to the Astrophysical Journa
Deflections in Magnet Fringe Fields
A transverse multipole expansion is derived, including the longitudinal
components necessarily present in regions of varying magnetic field profile. It
can be used for exact numerical orbit following through the fringe field
regions of magnets whose end designs introduce no extraneous components, {\it
i.e.} fields not required to be present by Maxwell's equations. Analytic
evaluations of the deflections are obtained in various approximations. Mainly
emphasized is a ``straight-line approximation'', in which particle orbits are
treated as straight lines through the fringe field regions. This approximation
leads to a readily-evaluated figure of merit, the ratio of r.m.s. end
deflection to nominal body deflection, that can be used to determine whether or
not a fringe field can be neglected. Deflections in ``critical'' cases (e.g.
near intersection regions) are analysed in the same approximation.Comment: To be published in Physical Review
Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel
We theoretically investigate the process of coupling cold atoms into the core
of a hollow-core photonic-crystal optical fiber using a blue-detuned
Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam
to couple the atoms, the blue-detuned hollow-beam can confine cold atoms to the
darkest regions of the beam thereby minimizing shifts in the internal states
and making the guide highly robust to heating effects. This single optical beam
is used as both a funnel and guide to maximize the number of atoms into the
fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical
trap (MOT) above a vertically-oriented optical fiber. We observe a
gravito-optical trapping effect for atoms with high orbital momentum around the
trap axis, which prevents atoms from coupling to the fiber: these atoms lack
the kinetic energy to escape the potential and are thus trapped in the laser
funnel indefinitely. We find that by reducing the dipolar force to the point at
which the trapping effect just vanishes, it is possible to optimize the
coupling of atoms into the fiber. Our simulations predict that by using a
low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a
20-{\mu}m radius core hollow-fiber it is possible to couple 11% of the atoms
from a MOT 9 mm away from the fiber. When MOT is positioned further away,
coupling efficiencies over 50% can be achieved with larger core fibers.Comment: 11 pages, 12 figures, 1 tabl
Search for a Solution of the Pioneer Anomaly
In 1972 and 1973 the Pioneer 10 and 11 missions were launched. They were the
first to explore the outer solar system and achieved stunning breakthroughs in
deep-space exploration. But beginning in about 1980 an unmodeled force of \sim
8 \times 10^{-8} cm/s^2, directed approximately towards the Sun, appeared in
the tracking data. It later was unambiguously verified as being in the data and
not an artifact. The cause remains unknown (although radiant heat remains a
likely origin). With time more and more effort has gone into understanding this
anomaly (and also possibly related effects). We review the situation and
describe ongoing programs to resolve the issue.Comment: 24 pages 8 figure
- …
