447 research outputs found
Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield
We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10[superscript 8] to 2.2 × 10[superscript 10] molec cm[superscript −3] over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10[superscript 6] to 2 × 10[superscript 7] molec cm[superscript −3] over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10[superscript 11] and 2 × 10[superscript 11] molec cm[superscript −3] s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.National Science Foundation (U.S.). Atmospheric Chemistry Program (Grant AGS-1056225)National Science Foundation (U.S.). Atmospheric Chemistry Program (Grant AGS-1245011
Adsorptive uptake of water by semisolid secondary organic aerosols
Aerosol climate effects are intimately tied to interactions with water. Here we combine hygroscopicity measurements with direct observations about the phase of secondary organic aerosol (SOA) particles to show that water uptake by slightly oxygenated SOA is an adsorption-dominated process under subsaturated conditions, where low solubility inhibits water uptake until the humidity is high enough for dissolution to occur. This reconciles reported discrepancies in previous hygroscopicity closure studies. We demonstrate that the difference in SOA hygroscopic behavior in subsaturated and supersaturated conditions can lead to an effect up to about 30% in the direct aerosol forcinghighlighting the need to implement correct descriptions of these processes in atmospheric models. Obtaining closure across the water saturation point is therefore a critical issue for accurate climate modeling.Peer reviewe
Nanofluidic transport governed by the liquid/vapour interface
Liquid/vapour interfaces govern the behaviour of a wide range of systems but remain poorly understood, leaving ample margin for the exploitation of intriguing functionalities for applications. Here, we systematically investigate the role of liquid/vapour interfaces in the transport of water across apposing liquid menisci in osmosis membranes comprising short hydrophobic nanopores that separate two fluid reservoirs. We show experimentally that mass transport is limited by molecular reflection from the liquid/vapour interface below a certain length scale, which depends on the transmission probability of water molecules across the nanopores and on the condensation probability of a water molecule incident on the liquid surface. This fundamental yet elusive condensation property of water is measured under near-equilibrium conditions and found to decrease from 0.36 ± 0.21 at 30 °C to 0.18 ± 0.09 at 60 °C. These findings define the regime in which liquid/vapour interfaces govern nanofluidic transport and have implications for understanding mass transport in nanofluidic devices, droplets and bubbles, biological components and porous media involving liquid/vapour interfaces.Center for Clean Water and Clean Energy at MIT and KFUPM (Project R10-CW-09
Calorimetric study of geopolymer binders based on natural pozzolan
This paper investigates the kinetics of geopolymerisation in an inorganic polymeric binder based on a natural pozzolan. The heat released by the exothermic geopolymerisation reaction process is monitored under isothermal temperature conditions, maintained in a differential scanning calorimeter using a water circulation cell. Calorimetric data are obtained isothermally at 65, 75, and 85 °C with various Na2O/Al2O3 and SiO2/Na2O molar ratios and in the presence and absence of small amounts of calcium aluminate cement (used as an efflorescence control admixture in these binder systems). The first stage of reaction, which is rapid and strongly exothermic, is shortened as the temperature increases. The total heat of reaction increases in the mixes containing calcium aluminate cement, but the apparent activation energy calculated using a pseudo-first-order reaction model is lower than without added calcium aluminate cement. At a constant overall SiO2/Na2O molar ratio, the apparent activation energy is decreased as the Na2O/Al2O3 molar ratio increases. Calcium aluminate cement, therefore, reduces the minimum energy required to initiate geopolymerisation reactions of this natural pozzolan and facilitates the progress of the reactions which lead to formation of a cementitious product
novel geopolymeric material cured at room temperature
[EN] Alkali activated binders are a new class of binding material with comparable or enhanced performance to Portland cement. These binding materials are obtained by a chemical reaction between an aluminosilicate material and a highly alkaline solution. In most cases, the setting hardening process of this binder is performed at high curing temperatures. In this paper, alkali activated mortars based on vitreous calcium aluminosilicate (VCAS) cured at room temperature are evaluated. Mechanical strength development and microstructural analysis (scanning electron microscopy, thermogravimetric analysis, X-ray diffraction and mercury intrusion porosimetry) of these materials are performed. Mortars yielded compressive strength ¡-89 MPa after 360 days. This is the first time that VCAS is used as aluminosilicate source material in the production of alkali activated mortars cured at room temperature.The authors acknowledge the Ministerio de Ciencia e Innovacio´ n of the Spanish Government (projecto. BIA2011-26947) and the Vitrominerals company for supplying VCAS samples.Mitsuuchi Tashima, M.; Soriano Martínez, L.; Monzó Balbuena, JM.; Borrachero Rosado, MV.; Paya Bernabeu, JJ. (2013). novel geopolymeric material cured at room temperature. Advances in Applied Ceramics. 112:179-183. https://doi.org/10.1179/1743676112Y.0000000056S17918311
The effect of microencapsulated phase change materials on the rheology of geopolymer and Portland cement mortars
The effect of microencapsulated phase‐change materials (MPCM) on the rheological properties of pre‐set geopolymer and Portland cement mortars was examined. Microcapsules with hydrophilic and hydrophobic shells were compared. The shear rate dependency of the viscosities fitted well to a double Carreau model. The zero shear viscosities are higher for geopolymer mortar, illustrating poorer workability. The time evolution of the viscosities was explored at shear rates of 1 and 10 s−1. New empirical equations were developed to quantify the time‐dependent viscosity changes. The highest shear rate disrupted the buildup of the mortar structures much more than the lower shear rate. Microcapsules with a hydrophobic shell affect the rheological properties much less than the microcapsules with a hydrophilic shell, due to the higher water adsorption onto the hydrophilic microcapsules. Shear forces was found to break down the initial structures within geopolymer mortars more easily than for Portland cement mortars, while the geopolymer reaction products are able to withstand shear forces better than Portland cement hydration products. Initially, the viscosity of geopolymer mortars increases relatively slowly during due to formation of geopolymer precursors; at longer times, there is a steeper viscosity rise caused by the development of a 3D‐geopolymer network. Disruption of agglomerates causes the viscosities of portland cement mortars to decrease during the first few minutes, after which the hydration process (increasing viscosities) competes with shear‐induced disruption of the structures (decreasing viscosities), resulting in a complex viscosity behavior.publishedVersio
Ion-exchanged geopolymer for photocatalytic degradation of a volatile organic compound
In thepresentworkitisshownhowgeopolymerscanbeusedtocontrolindoorandoutdoorair pollution byphotolysisof2-ButanoneasaVolatileOrganicCompound(VOC).Anionexchange procedurewasfollowedtoincorporateTiO2 into ageopolymer(IEG),anddifferent2-Butanone concentrations wereusedinabatchreactorunderdryandhumidconditions.Variationon 2-Butanone concentrationwasfollowedbygaschromatography.ALangmuir Hinshelwood modelwas used todeterminethedisappearancerateofreactantattheinitialstageofthereaction.Gasca-Tirado, J.; Manzano-Ramirez, A.; Vazquez-Landaverde, PA.; Herrera-Diaz, EI.; Rodriguez-Ugarte, ME.; Rubio-Avalos, JC.; Amigó Borrás, V.... (2014). Ion-exchanged geopolymer for photocatalytic degradation of a volatile organic compound. Materials Letters. 134:222-224. doi:10.1016/j.matlet.2014.07.090S22222413
Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength
STRUCTURAL FORMATION AND LEACHING BEHAVIOR OF MECHANICALLY ACTIVATED LIGNITE FLY ASH BASED GEOPOLYMER
Fracture properties of GGBFS-blended fly ash geopolymer concrete cured in ambient temperature
Fracture characteristics are important part of concrete design against brittle failure. Recently, fly ash geopolymer binder is gaining significant interest as a greener alternative to traditional ordinary Portland cement (OPC). Hence it is important to understand the failure behaviour of fly ash based geopolymers for safe design of structures built with such materials. This paper presents the fracture properties of ambient-cured geopolymer concrete (GPC). Notched beam specimens of GPC mixtures based mainly on fly ash and a small percentage of ground granulated blast furnace slag were subjected to three-point bending test to evaluate fracture behaviour. The effect of mixture proportions on the fracture properties were compared with control as well as OPC concrete. The results show that fracture properties are influenced by the mixture compositions. Presence of additional water affected fracture properties adversely. Fracture energy is generally governed by tensile strength which correlates with compressive strength. Critical stress intensity factor varies with the variation of flexural strength. Geopolymer concrete specimens showed similar load–deflection behaviour as OPC concrete specimens. The ambient cured GPC showed relatively more ductility than the previously reported heat cured GPC, which is comparable to the OPC specimens. Fly ash based GPC achieved relatively higher fracture energy and similar values of KIC as compared to those of OPC concrete of similar compressive strength. Thus, fly ash based GPC designed for curing in ambient condition can achieve fracture properties comparable to those of normal OPC concrete
- …
