636 research outputs found
Dynamic Computation of Network Statistics via Updating Schema
In this paper we derive an updating scheme for calculating some important
network statistics such as degree, clustering coefficient, etc., aiming at
reduce the amount of computation needed to track the evolving behavior of large
networks; and more importantly, to provide efficient methods for potential use
of modeling the evolution of networks. Using the updating scheme, the network
statistics can be computed and updated easily and much faster than
re-calculating each time for large evolving networks. The update formula can
also be used to determine which edge/node will lead to the extremal change of
network statistics, providing a way of predicting or designing evolution rule
of networks.Comment: 17 pages, 6 figure
Eigenvalue Estimation of Differential Operators
We demonstrate how linear differential operators could be emulated by a
quantum processor, should one ever be built, using the Abrams-Lloyd algorithm.
Given a linear differential operator of order 2S, acting on functions
psi(x_1,x_2,...,x_D) with D arguments, the computational cost required to
estimate a low order eigenvalue to accuracy Theta(1/N^2) is
Theta((2(S+1)(1+1/nu)+D)log N) qubits and O(N^{2(S+1)(1+1/nu)} (D log N)^c)
gate operations, where N is the number of points to which each argument is
discretized, nu and c are implementation dependent constants of O(1). Optimal
classical methods require Theta(N^D) bits and Omega(N^D) gate operations to
perform the same eigenvalue estimation. The Abrams-Lloyd algorithm thereby
leads to exponential reduction in memory and polynomial reduction in gate
operations, provided the domain has sufficiently large dimension D >
2(S+1)(1+1/nu). In the case of Schrodinger's equation, ground state energy
estimation of two or more particles can in principle be performed with fewer
quantum mechanical gates than classical gates.Comment: significant content revisions: more algorithm details and brief
analysis of convergenc
Fast linear algebra is stable
In an earlier paper, we showed that a large class of fast recursive matrix
multiplication algorithms is stable in a normwise sense, and that in fact if
multiplication of -by- matrices can be done by any algorithm in
operations for any , then it can be done
stably in operations for any . Here we extend
this result to show that essentially all standard linear algebra operations,
including LU decomposition, QR decomposition, linear equation solving, matrix
inversion, solving least squares problems, (generalized) eigenvalue problems
and the singular value decomposition can also be done stably (in a normwise
sense) in operations.Comment: 26 pages; final version; to appear in Numerische Mathemati
Approximating Spectral Impact of Structural Perturbations in Large Networks
Determining the effect of structural perturbations on the eigenvalue spectra
of networks is an important problem because the spectra characterize not only
their topological structures, but also their dynamical behavior, such as
synchronization and cascading processes on networks. Here we develop a theory
for estimating the change of the largest eigenvalue of the adjacency matrix or
the extreme eigenvalues of the graph Laplacian when small but arbitrary set of
links are added or removed from the network. We demonstrate the effectiveness
of our approximation schemes using both real and artificial networks, showing
in particular that we can accurately obtain the spectral ranking of small
subgraphs. We also propose a local iterative scheme which computes the relative
ranking of a subgraph using only the connectivity information of its neighbors
within a few links. Our results may not only contribute to our theoretical
understanding of dynamical processes on networks, but also lead to practical
applications in ranking subgraphs of real complex networks.Comment: 9 pages, 3 figures, 2 table
Stochastic differential equations for evolutionary dynamics with demographic noise and mutations
We present a general framework to describe the evolutionary dynamics of an
arbitrary number of types in finite populations based on stochastic
differential equations (SDE). For large, but finite populations this allows to
include demographic noise without requiring explicit simulations. Instead, the
population size only rescales the amplitude of the noise. Moreover, this
framework admits the inclusion of mutations between different types, provided
that mutation rates, , are not too small compared to the inverse
population size 1/N. This ensures that all types are almost always represented
in the population and that the occasional extinction of one type does not
result in an extended absence of that type. For this limits the use
of SDE's, but in this case there are well established alternative
approximations based on time scale separation. We illustrate our approach by a
Rock-Scissors-Paper game with mutations, where we demonstrate excellent
agreement with simulation based results for sufficiently large populations. In
the absence of mutations the excellent agreement extends to small population
sizes.Comment: 8 pages, 2 figures, accepted for publication in Physical Review
On the linear independence of spikes and sines
The purpose of this work is to survey what is known about the linear
independence of spikes and sines. The paper provides new results for the case
where the locations of the spikes and the frequencies of the sines are chosen
at random. This problem is equivalent to studying the spectral norm of a random
submatrix drawn from the discrete Fourier transform matrix. The proof involves
depends on an extrapolation argument of Bourgain and Tzafriri.Comment: 16 pages, 4 figures. Revision with new proof of major theorem
Multifractality at the spin quantum Hall transition
Statistical properties of critical wave functions at the spin quantum Hall
transition are studied both numerically and analytically (via mapping onto the
classical percolation). It is shown that the index characterizing the
decay of wave function correlations is equal to 1/4, at variance with the
decay of the diffusion propagator. The multifractality spectra of
eigenfunctions and of two-point conductances are found to be
close-to-parabolic, and .Comment: 4 pages, 3 figure
- …
