636 research outputs found

    Dynamic Computation of Network Statistics via Updating Schema

    Full text link
    In this paper we derive an updating scheme for calculating some important network statistics such as degree, clustering coefficient, etc., aiming at reduce the amount of computation needed to track the evolving behavior of large networks; and more importantly, to provide efficient methods for potential use of modeling the evolution of networks. Using the updating scheme, the network statistics can be computed and updated easily and much faster than re-calculating each time for large evolving networks. The update formula can also be used to determine which edge/node will lead to the extremal change of network statistics, providing a way of predicting or designing evolution rule of networks.Comment: 17 pages, 6 figure

    Eigenvalue Estimation of Differential Operators

    Full text link
    We demonstrate how linear differential operators could be emulated by a quantum processor, should one ever be built, using the Abrams-Lloyd algorithm. Given a linear differential operator of order 2S, acting on functions psi(x_1,x_2,...,x_D) with D arguments, the computational cost required to estimate a low order eigenvalue to accuracy Theta(1/N^2) is Theta((2(S+1)(1+1/nu)+D)log N) qubits and O(N^{2(S+1)(1+1/nu)} (D log N)^c) gate operations, where N is the number of points to which each argument is discretized, nu and c are implementation dependent constants of O(1). Optimal classical methods require Theta(N^D) bits and Omega(N^D) gate operations to perform the same eigenvalue estimation. The Abrams-Lloyd algorithm thereby leads to exponential reduction in memory and polynomial reduction in gate operations, provided the domain has sufficiently large dimension D > 2(S+1)(1+1/nu). In the case of Schrodinger's equation, ground state energy estimation of two or more particles can in principle be performed with fewer quantum mechanical gates than classical gates.Comment: significant content revisions: more algorithm details and brief analysis of convergenc

    Fast linear algebra is stable

    Full text link
    In an earlier paper, we showed that a large class of fast recursive matrix multiplication algorithms is stable in a normwise sense, and that in fact if multiplication of nn-by-nn matrices can be done by any algorithm in O(nω+η)O(n^{\omega + \eta}) operations for any η>0\eta > 0, then it can be done stably in O(nω+η)O(n^{\omega + \eta}) operations for any η>0\eta > 0. Here we extend this result to show that essentially all standard linear algebra operations, including LU decomposition, QR decomposition, linear equation solving, matrix inversion, solving least squares problems, (generalized) eigenvalue problems and the singular value decomposition can also be done stably (in a normwise sense) in O(nω+η)O(n^{\omega + \eta}) operations.Comment: 26 pages; final version; to appear in Numerische Mathemati

    Approximating Spectral Impact of Structural Perturbations in Large Networks

    Full text link
    Determining the effect of structural perturbations on the eigenvalue spectra of networks is an important problem because the spectra characterize not only their topological structures, but also their dynamical behavior, such as synchronization and cascading processes on networks. Here we develop a theory for estimating the change of the largest eigenvalue of the adjacency matrix or the extreme eigenvalues of the graph Laplacian when small but arbitrary set of links are added or removed from the network. We demonstrate the effectiveness of our approximation schemes using both real and artificial networks, showing in particular that we can accurately obtain the spectral ranking of small subgraphs. We also propose a local iterative scheme which computes the relative ranking of a subgraph using only the connectivity information of its neighbors within a few links. Our results may not only contribute to our theoretical understanding of dynamical processes on networks, but also lead to practical applications in ranking subgraphs of real complex networks.Comment: 9 pages, 3 figures, 2 table

    Stochastic differential equations for evolutionary dynamics with demographic noise and mutations

    Get PDF
    We present a general framework to describe the evolutionary dynamics of an arbitrary number of types in finite populations based on stochastic differential equations (SDE). For large, but finite populations this allows to include demographic noise without requiring explicit simulations. Instead, the population size only rescales the amplitude of the noise. Moreover, this framework admits the inclusion of mutations between different types, provided that mutation rates, μ\mu, are not too small compared to the inverse population size 1/N. This ensures that all types are almost always represented in the population and that the occasional extinction of one type does not result in an extended absence of that type. For μN1\mu N\ll1 this limits the use of SDE's, but in this case there are well established alternative approximations based on time scale separation. We illustrate our approach by a Rock-Scissors-Paper game with mutations, where we demonstrate excellent agreement with simulation based results for sufficiently large populations. In the absence of mutations the excellent agreement extends to small population sizes.Comment: 8 pages, 2 figures, accepted for publication in Physical Review

    On the linear independence of spikes and sines

    Get PDF
    The purpose of this work is to survey what is known about the linear independence of spikes and sines. The paper provides new results for the case where the locations of the spikes and the frequencies of the sines are chosen at random. This problem is equivalent to studying the spectral norm of a random submatrix drawn from the discrete Fourier transform matrix. The proof involves depends on an extrapolation argument of Bourgain and Tzafriri.Comment: 16 pages, 4 figures. Revision with new proof of major theorem

    Multifractality at the spin quantum Hall transition

    Get PDF
    Statistical properties of critical wave functions at the spin quantum Hall transition are studied both numerically and analytically (via mapping onto the classical percolation). It is shown that the index η\eta characterizing the decay of wave function correlations is equal to 1/4, at variance with the r1/2r^{-1/2} decay of the diffusion propagator. The multifractality spectra of eigenfunctions and of two-point conductances are found to be close-to-parabolic, Δqq(1q)/8\Delta_q\simeq q(1-q)/8 and Xqq(3q)/4X_q\simeq q(3-q)/4.Comment: 4 pages, 3 figure
    corecore