1,775 research outputs found
Local Out-Tournaments with Upset Tournament Strong Components I: Full and Equal {0,1}-Matrix Ranks
A digraph D is a local out-tournament if the outset of every vertex is a tournament. Here, we use local out-tournaments, whose strong components are upset tournaments, to explore the corresponding ranks of the adjacency matrices. Of specific interest is the out-tournament whose adjacency matrix has boolean, nonnegative integer, term, and real rank all equal to the number of vertices, n. Corresponding results for biclique covers and partitions of the digraph are provided
Combined Visualization and Heat Transfer Measurements for Steam Flow Condensation in Hydrophilic and Hydrophobic Mini-Gaps
Citation: Chen X, Derby MM. Combined Visualization and Heat Transfer Measurements for Steam Flow Condensation in Hydrophilic and Hydrophobic Mini-Gaps. ASME. J. Heat Transfer. 2016;138(9):091503-091503-11. doi:10.1115/1.4033496.Condensation enhancement was investigated for flow condensation in mini-channels. Simultaneous flow visualization and heat transfer experiments were conducted in 0.952-mm diameter mini-gaps. An open loop steam apparatus was constructed for a mass flux range of 50–100 kg/m2s and steam quality range of 0.2–0.8, and validated with single-phase experiments. Filmwise condensation was observed in the hydrophilic mini-gap; pressure drop and heat transfer coefficients were compared to the (Kim and Mudawar, 2013, “Universal Approach to Predicting Heat Transfer Coefficient for Condensing Mini/Micro-Channel Flow,” Int. J. Heat Mass Transfer, 56(1–2), pp. 238–250) correlation and prediction was very good; the mean absolute error (MAE) was 20.2%. Dropwise condensation was observed in the hydrophobic mini-gap, and periodic cycles of droplet nucleation, coalescence, and departure were found at all mass fluxes. Snapshots of six typical sweeping cycles were presented, including integrated flow visualization quantitative and qualitative results combined with heat transfer coefficients. With a fixed average steam quality (x¯ = 0.42), increasing mass flux from 50 to 75 to 100 kg/m2s consequently reduced average sweeping periods from 28 to 23 to 17 ms and reduced droplet departure diameters from 13.7 to 12.9 to 10.3 μm, respectively. For these cases, condensation heat transfer coefficients increased from 154,700 to 176,500 to 194,800 W/m2 K at mass fluxes of 50, 75, and 100 kg/m2 s, respectively. Increased mass fluxes and steam quality reduced sweeping periods and droplet departure diameters, thereby reducing liquid thickness and increasing heat transfer coefficients
Numerical Optimization of the Thermal Field in Bridgman Detached Growth
The global modeling of the thermal field in two vertical Bridgman-like crystal growth configurations, has been performed to get optimal thermal conditions for a successful detached growth of Ge and CdTe crystals. These computations are performed using the CrysMAS code and expand upon our previous analysis [1] that propose a new mechanism involving the thermal field and meniscus position to explain stable conditions for dewetted Bridgman growth. The analysis of the vertical Bridgman configuration with two heaters, used by Palosz et al. for the detached growth of Ge, shows, consistent with their results, that the large wetting angle of germanium on boron nitride surfaces was an important factor to promote a successful detached growth. Our computations predict that by initiating growth much higher into the hot zone of the furnace, the thermal conditions will be favorable for continued detachment even for systems that did not exhibit high contact angles. The computations performed for a vertical gradient freeze configuration with three heaters representative of that used for the detached growth of CdTe, show favorable thermal conditions for dewetting during the entirely growth run described. Improved thermal conditions are also predicted for coated silica crucibles when the solid-liquid interface advances higher into the hot zone during the solidification process. The second set of experiments on CdTe growth described elsewhere has shown the reattachment of the crystal to the crucible after few centimeters of dewetted growth. The thermal modeling of this configuration shows a second solidification front appearing at the top of the sample and approaching the middle line across the third heater. In these conditions, the crystal grows detached from the bottom, but will be attached to the crucible in the upper part because of the solidification without gap in this region. The solidification with two interfaces can be avoided when the top of the sample is positioned below the middle position of the third furnace
Optical-inertia space sextant for an advanced space navigation system, phase B
Optical-inertia space sextant for advanced space navigation syste
Droplet ejection and sliding on a flapping film
Citation: X. Chen, N. Doughramaji, A.R. Betz, M.M. Derby, Droplet departure and ejection on flapping films, AIP Advances, 7, 035014.Water recovery and subsequent reuse are required for human consumption as well as industrial, and agriculture applications. Moist air streams, such as cooling tower plumes and fog, represent opportunities for water harvesting. In this work, we investigate a flapping mechanism to increase droplet shedding on thin, hydrophobic films for two vibrational cases (e.g., ± 9 mm and 11 Hz; ± 2 mm and 100 Hz). Two main mechanisms removed water droplets from the flapping film: vibrational-induced coalescence/sliding and droplet ejection from the surface. Vibrations mobilized droplets on the flapping film, increasing the probability of coalescence with neighboring droplets leading to faster droplet growth. Droplet departure sizes of 1–2 mm were observed for flapping films,compared to 3–4 mm on stationary films, which solely relied on gravity for droplet removal. Additionally, flapping films exhibited lower percentage area coverage by water after a few seconds. The second removal mechanism, droplet ejection was analyzed with respect to surface wave formation and inertia. Smaller droplets (e.g., 1-mm diameter) were ejected at a higher frequency which is associated with a higher acceleration. Kinetic energy of the water was the largest contributor to energy required to flap the film, and low energy inputs (i.e., 3.3 W/m2) were possible. Additionally, self-flapping films could enable novel water collection and condensation with minimal energy input
Valve-sparing neo-aortic root replacement after Fontan completion for hypoplastic left heart syndrome
Digitalitzat per Artypla
Evapotranspiration from Spider and Jade Plants Can Improve Relative Humidity in an Interior Environment
Citation: Kerschen, E., Garten, C., Williams, K., & Derby, M. (2016). Evapotranspiration from Spider and Jade Plants Can Improve Relative Humidity in an Interior Environment. HortTechnology, 26(6), 803-810. doi: 10.21273/HORTTECH03473-16Plants in the interiorscape have many documented benefits, but their potential for use in conjunction with mechanical heating, ventilation, and air conditioning (HVAC) systems to humidify dry indoor environments requires more study. In this research, evaporation and evapotranspiration rates for a root medium control, variegated spider plants (Chlorophytum comosum), and green jade plants (Crassula argentea) were measured over 24 hours at 25% and 60% relative humidity (RH) and 20 °C to generate data for calculation of the leaf surface area and number of plants necessary to influence indoor humidity levels. Evaporation and evapotranspiration rates were higher for all cases at 25% RH compared with 60% RH. At 25% RH during lighted periods, evapotranspiration rates were ?15 g·h?1 for spider plants and 8 g·h?1 for jade plants. Spider plants transpired during lighted periods due to their C3 photosynthetic pathway, whereas jade plants had greater evapotranspiration rates during dark periods—about 11 g·h?1—due to their crassulacean acid metabolism (CAM) photosynthetic pathway. A combination of plants with different photosynthetic pathways (i.e., C3 and CAM combination) could contribute to greater consistency between evapotranspiration rates from day to night for humidification of interior spaces. Using the measured data, calculations indicated that 32,300 cm2 total spider plant leaf surface area, which is 25 spider plants in 4-inch-diameter pots or fewer, larger plants, could increase the humidity of an interior bedroom from 20% RH to a more comfortable 30% RH under bright interior light conditions
Droplet Coalescence and Freezing on Hydrophilic, Hydrophobic, and Biphilic Surfaces
Frost and ice formation can have severe negative consequences, such as aircraft safety and reliability. At atmospheric pressure, water heterogeneously condenses and then freezes at low temperatures. To alter this freezing process, this research examines the effects of biphilic surfaces (surfaces which combine hydrophilic and hydrophobic regions) on heterogeneous water nucleation, growth, and freezing. Silicon wafers were coated with a self-assembled monolayer and patterned to create biphilic surfaces. Samples were placed on a freezing stage in an environmental chamber at atmospheric pressure, at a temperature of 295 K, and relative humidities of 30%, 60%, and 75%. Biphilic surfaces had a significant effect on droplet dynamics and freezing behavior. The addition of biphilic patterns decreased the temperature required for freezing by 6 K. Biphilic surfaces also changed the size and number of droplets on a surface at freezing and delayed the time required for a surface to freeze. The main mechanism affecting freezing characteristics was the coalescence behavior.Citation: A. Van Dyke, D. Collard, M. M. Derby and A. R. Betz, "Droplet Coalescence and Freezing on Hydrophilic, Hydrophobic, and Biphilic Surfaces," Applied Physics Letters, 107, Issue 14, 201
Prognostic value of the ratio between prothesis area and indexed annulus area measured by multiSlice-CT for transcatheter aortic valve implantation procedures
Background Postprocedural aortic regurgitations following transcatheter aortic valve implantation (TAVI) procedures remain an is- sue. Benefit of oversizing strategies to prevent them isn’t well established. We compared different level of oversizing in our cohort of con- secutive patients to address if severe oversizing compared to normal sizing had an impact on post-procedural outcomes. Methods From January 2010 to August 2013, consecutive patients were referred for TAVI with preoperative Multislice-CT (MSCT) and the procedures were achieved using Edwards Sapien® or Corevalve devices®. Retrospectively, according to pre-procedural MSCT and the valve size, pa- tients were classified into three groups: normal, moderate and severe oversizing; depending on the ratio between the prosthesis area and the annulus area indexed and measured on MSCT. Main endpoint was mid-term mortality and secondary endpoints were the Valve Academic Research Consortium (VARC-2) endpoints. Results Two hundred and sixty eight patients had a MSCT and underwent TAVI procedure, with mainly Corevalve®. While all-cause and cardiovascular mortality rates were similar in all groups, post-procedural new pacemaker (PM) implantation rate was significantly higher in the severe oversizing group (P = 0.03), while we observed more in-hospital congestive heart-failure (P = 0.02) in the normal sizing group. There was a trend toward more moderate to severe aortic regurgitation (AR) in the normal sizing group (P = 0.07). Conclusions Despite a higher rate of PM implantation, oversizing based on this ratio reduces aortic leak with lower rates of post-procedural complications and a similar mid-term survival
Absolute and convective instabilities of parallel propagating circularly polarized Alfvén waves: numerical results
Context.The stability of parallel propagating circularly polarized Alfvén waves (pump waves) has been studied for more than four decades with the use of normal mode analysis. It is well known that the normal mode analysis does not answer the question if a pump wave looks stable or unstable in a particular reference frame. To answer this question it is necessary to find out if the instability is absolute or convective in this reference frame.
Aims.We extend our previous study of absolute and convective instabilities of pump waves with small amplitude to pump waves with arbitrary amplitude.
Methods.To study the absolute and convective instabilities of pump waves with arbitrary amplitude we numerically implement Brigg's method.
Results.We show that the wave is absolutely unstable in a reference frame moving with the velocity U with respect to the rest plasma if U satisfies the inequality Ul Ur) we study the signalling problem. We show that spatially amplifying waves exist only when the signalling frequency is in two symmetric frequency bands, and calculate the dependences of the boundaries of these bands on U for different values of a . We also obtain the dependences of the maximum spatial amplification rate on U for different values of a . The implication of these results on the interpretation of observational data from space missions is discussed. In particular, it is shown that circularly polarized Alfvén waves propagating in the solar wind are convectively unstable in a reference frame of any realistic spacecraft
- …
