414 research outputs found
Intense 2-cycle laser pulses induce time-dependent bond-hardening in a polyatomic molecule
A time-dependent bond-hardening process is discovered in a polyatomic
molecule (tetramethyl silane, TMS) using few-cycle pulses of intense 800 nm
light. In conventional mass spectrometry, symmetrical molecules like TMS do not
exhibit a prominent molecular ion (TMS) as unimolecular dissociation into
[Si(CH) proceeds very fast. Under strong field and few-cycle
conditions, this dissociation channel is defeated by time-dependent
bond-hardening: a field-induced potential well is created in the TMS
potential energy curve that effectively traps a wavepacket. The time-dependence
of this bond hardening process is verified using longer-duration ( 100
fs) pulses; the relatively "slower" fall-off of optical field in such pulses
allows the initially trapped wavepacket to leak out, thereby rendering TMS
unstable once again. Our results are significant as they demonstrate (i)
optical generation of polyatomic ions that are normally inaccessible and (ii)
optical control of dynamics in strong fields, with distinct advantages over
weak-field control scenarios that demand a narrow bandwidth appropriate for a
specified transition.Comment: To appear in Phys. Rev. Let
Control of the Onset of Filamentation in Condensed Media
Propagation of intense, ultrashort laser pulses through condensed media like
crystals of BaF and sapphire results in the formation of filaments. We
demonstrate that the onset of filamentation may be controlled by rotating the
plane of polarization of incident light. We directly visualize filamentation in
BaF_2 via six-photon absorption-induced fluorescence and, concomitantly, by
probing the spectral and spatial properties of white light that is generated.Comment: To appear in Phys. Rev.
Euler buckling in red blood cells: An optically driven biological micromotor
We investigate the physics of an optically-driven micromotor of biological
origin. A single, live red blood cell, when placed in an optical trap folds
into a rod-like shape. If the trapping laser beam is circularly polarized, the
folded RBC rotates. A model based on the concept of buckling instabilities
captures the folding phenomenon; the rotation of the cell is simply understood
using the Poincar\`e sphere. Our model predicts that (i) at a critical
intensity of the trapping beam the RBC shape undergoes large fluctuations and
(ii) the torque is proportional to the intensity of the laser beam. These
predictions have been tested experimentally. We suggest a possible mechanism
for emergence of birefringent properties in the RBC in the folded state
Stochastic analysis of surface roughness
For the characterization of surface height profiles we present a new
stochastic approach which is based on the theory of Markov processes. With this
analysis we achieve a characterization of the complexity of the surface
roughness by means of a Fokker-Planck or Langevin equation, providing the
complete stochastic information of multiscale joint probabilities. The method
was applied to different road surface profiles which were measured with high
resolution. Evidence of Markov properties is shown. Estimations for the
parameters of the Fokker-Planck equation are based on pure, parameter free data
analysis
GABA and Glutamate Levels in Occlusal Splint-Wearing Males with Possible Bruxism
Objective
The inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays an important role in the pathophysiology of anxiety behavioural disorders such as panic disorder and post-traumatic stress disorder and is also implicated in the manifestation of tooth-grinding and clenching behaviours generally known as bruxism. In order to test whether the stress-related behaviours of tooth-grinding and clenching share similar underlying mechanisms involving GABA and other metabolites as do anxiety-related behavioural disorders, we performed a Magnetic Resonance Spectroscopy (MRS) study for accurate, in vivo metabolite quantification in anxiety-related brain regions.
Design
MRS was performed in the right hippocampus and right thalamus involved in the hypothalamic−pituitary−adrenal axis system, together with a motor planning region (dorsal anterior cingulate cortex/pre-supplementary motor area) and right dorsolateral prefrontal cortex (DLPFC). Eight occlusal splint-wearing men (OCS) with possible tooth-grinding and clenching behaviours and nine male controls (CON) with no such behaviour were studied.
Results
Repeated-measures ANOVA showed significant Group × Region interaction for GABA+ (p = 0.001) and glutamate (Glu) (p = 0.031). Between-group post hoc ANOVA showed significantly lower levels of GABA+ (p = 0.003) and higher levels of Glu (p = 0.002) in DLPFC of OCS subjects. These GABA+ and Glu group differences remained significant (GABA+, p = 0.049; Glu, p = 0.039) after the inclusion of anxiety as a covariate. Additionally, GABA and Glu levels in the DLPFC of all subjects were negatively related (Pearson's r = −0.75, p = 0.003).
Conclusions
These findings indicate that the oral behaviours of tooth-grinding and clenching, generally known as bruxism, may be associated with disturbances in brain GABAergic and glutamatergic systems
Stochastic analysis of different rough surfaces
This paper shows in detail the application of a new stochastic approach for
the characterization of surface height profiles, which is based on the theory
of Markov processes. With this analysis we achieve a characterization of the
scale dependent complexity of surface roughness by means of a Fokker-Planck or
Langevin equation, providing the complete stochastic information of multiscale
joint probabilities. The method is applied to several surfaces with different
properties, for the purpose of showing the utility of this method in more
details. In particular we show the evidence of Markov properties, and we
estimate the parameters of the Fokker-Planck equation by pure, parameter-free
data analysis. The resulting Fokker-Planck equations are verified by numerical
reconstruction of conditional probability density functions. The results are
compared with those from the analysis of multi-affine and extended multi-affine
scaling properties which is often used for surface topographies. The different
surface structures analysed here show in details advantages and disadvantages
of these methods.Comment: Minor text changes to be identical with the published versio
Surface Scaling Analysis of a Frustrated Spring-network Model for Surfactant-templated Hydrogels
We propose and study a simplified model for the surface and bulk structures
of crosslinked polymer gels, into which voids are introduced through templating
by surfactant micelles. Such systems were recently studied by Atomic Force
Microscopy [M. Chakrapani et al., e-print cond-mat/0112255]. The gel is
represented by a frustrated, triangular network of nodes connected by springs
of random equilibrium lengths. The nodes represent crosslinkers, and the
springs correspond to polymer chains. The boundaries are fixed at the bottom,
free at the top, and periodic in the lateral direction. Voids are introduced by
deleting a proportion of the nodes and their associated springs. The model is
numerically relaxed to a representative local energy minimum, resulting in an
inhomogeneous, ``clumpy'' bulk structure. The free top surface is defined at
evenly spaced points in the lateral (x) direction by the height of the topmost
spring, measured from the bottom layer, h(x). Its scaling properties are
studied by calculating the root-mean-square surface width and the generalized
increment correlation functions C_q(x)= . The surface is
found to have a nontrivial scaling behavior on small length scales, with a
crossover to scale-independent behavior on large scales. As the vacancy
concentration approaches the site-percolation limit, both the crossover length
and the saturation value of the surface width diverge in a manner that appears
to be proportional to the bulk connectivity length. This suggests that a
percolation transition in the bulk also drives a similar divergence observed in
surfactant templated polyacrylamide gels at high surfactant concentrations.Comment: 17 pages RevTex4, 10 imbedded eps figures. Expanded discussion of
multi-affinit
Effect of heat source on the growth of dendritic drying patterns
Shining a tightly-focused but low-powered laser beam on an absorber dispersed
in a biological fluid gives rise to spectacular growth of dendritic patterns.
These result from localized drying of the fluid because of efficient absorption
and conduction of optical energy by the absorber. We have carried out
experiments in several biologically relevant fluids and have analyzed patterns
generated by different types of absorbers. We observe that the growth velocity
of branches in the dendritic patterns can decrease below the value expected for
natural drying
Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease
Pedigree, linkage and association studies are consistent with heritable variation for complex disease due to the segregation of genetic factors in families and in the population. In contrast, de novo mutations make only minor contributions to heritability estimates for complex traits. Nonetheless, some de novo variants are known to be important in disease etiology. The identification of risk-conferring de novo variants will contribute to the discovery of etiologically relevant genes and pathways and may help in genetic counseling. There is considerable interest in the role of such mutations in complex neuropsychiatric disease, largely driven by new genotyping and sequencing technologies. An important role for large de novo copy number variations has been established. Recently, whole-exome sequencing has been used to extend the investigation of de novo variation to point mutations in protein-coding regions. Here, we consider several challenges for the interpretation of such mutations in the context of their role in neuropsychiatric disease
- …
