17,694 research outputs found
Open boundary Quantum Knizhnik-Zamolodchikov equation and the weighted enumeration of Plane Partitions with symmetries
We propose new conjectures relating sum rules for the polynomial solution of
the qKZ equation with open (reflecting) boundaries as a function of the quantum
parameter and the -enumeration of Plane Partitions with specific
symmetries, with . We also find a conjectural relation \`a la
Razumov-Stroganov between the limit of the qKZ solution and refined
numbers of Totally Symmetric Self Complementary Plane Partitions.Comment: 27 pages, uses lanlmac, epsf and hyperbasics, minor revision
Laughlin's wave functions, Coulomb gases and expansions of the discriminant
In the context of the fractional quantum Hall effect, we investigate
Laughlin's celebrated ansatz for the groud state wave function at fractional
filling of the lowest Landau level. Interpreting its normalization in terms of
a one component plasma, we find the effect of an additional quadrupolar field
on the free energy, and derive estimates for the thermodynamically equivalent
spherical plasma. In a second part, we present various methods for expanding
the wave function in terms of Slater determinants, and obtain sum rules for the
coefficients. We also address the apparently simpler question of counting the
number of such Slater states using the theory of integral polytopes.Comment: 97 pages, using harvmac (with big option recommended) and epsf, 7
figures available upon request, Saclay preprint Spht 93/12
Quantum Knizhnik-Zamolodchikov equation: reflecting boundary conditions and combinatorics
We consider the level 1 solution of quantum Knizhnik-Zamolodchikov equation
with reflecting boundary conditions which is relevant to the Temperley--Lieb
model of loops on a strip. By use of integral formulae we prove conjectures
relating it to the weighted enumeration of Cyclically Symmetric Transpose
Complement Plane Partitions and related combinatorial objects
Non-local scaling operators with entanglement renormalization
The multi-scale entanglement renormalization ansatz (MERA) can be used, in
its scale invariant version, to describe the ground state of a lattice system
at a quantum critical point. From the scale invariant MERA one can determine
the local scaling operators of the model. Here we show that, in the presence of
a global symmetry , it is also possible to determine a class of
non-local scaling operators. Each operator consist, for a given group element
, of a semi-infinite string \tGamma_g with a local operator
attached to its open end. In the case of the quantum Ising model,
, they correspond to the disorder operator ,
the fermionic operators and , and all their descendants.
Together with the local scaling operators identity , spin
and energy , the fermionic and disorder scaling operators ,
and are the complete list of primary fields of the Ising
CFT. Thefore the scale invariant MERA allows us to characterize all the
conformal towers of this CFT.Comment: 4 pages, 4 figures. Revised versio
Sum rules for the ground states of the O(1) loop model on a cylinder and the XXZ spin chain
The sums of components of the ground states of the O(1) loop model on a
cylinder or of the XXZ quantum spin chain at Delta=-1/2 (of size L) are
expressed in terms of combinatorial numbers. The methods include the
introduction of spectral parameters and the use of integrability, a mapping
from size L to L+1, and knot-theoretic skein relations.Comment: final version to be publishe
Conformal Invariance in (2+1)-Dimensional Stochastic Systems
Stochastic partial differential equations can be used to model second order
thermodynamical phase transitions, as well as a number of critical
out-of-equilibrium phenomena. In (2+1) dimensions, many of these systems are
conjectured (and some are indeed proved) to be described by conformal field
theories. We advance, in the framework of the Martin-Siggia-Rose field
theoretical formalism of stochastic dynamics, a general solution of the
translation Ward identities, which yields a putative conformal energy-momentum
tensor. Even though the computation of energy-momentum correlators is
obstructed, in principle, by dimensional reduction issues, these are bypassed
by the addition of replicated fields to the original (2+1)-dimensional model.
The method is illustrated with an application to the Kardar-Parisi-Zhang (KPZ)
model of surface growth. The consistency of the approach is checked by means of
a straightforward perturbative analysis of the KPZ ultraviolet region, leading,
as expected, to its conformal fixed point.Comment: Title, abstract and part of the text have been rewritten. To be
published in Physical Review E
Relative entropy in diffusive relaxation
We establish convergence in the diffusive limit from entropy weak solutions of
the equations of compressible gas dynamics with friction to the porous media equation away from vacuum.
The result is based on a Lyapunov type of functional provided by a calculation of the relative entropy.
The relative entropy method is also employed to establish convergence from entropic weak solutions
of viscoelasticity with memory to the system of viscoelasticity of the rate-type
- …
