12,048 research outputs found

    Helioseismology: a fantastic tool to probe the interior of the Sun

    Full text link
    Helioseismology, the study of global solar oscillations, has proved to be an extremely powerful tool for the investigation of the internal structure and dynamics of the Sun. Studies of time changes in frequency observations of solar oscillations from helioseismology experiments on Earth and in space have shown, for example, that the Sun's shape varies over solar cycle timescales. In particular, far-reaching inferences about the Sun have been obtained by applying inversion techniques to observations of frequencies of oscillations. The results, so far, have shown that the solar structure is remarkably close to the predictions of the standard solar model and, recently, that the near-surface region can be probed with sufficiently high spatial resolution as to allow investigations of the equation of state and of the solar envelope helium abundance. The same helioseismic inversion methods can be applied to the rotational frequency splittings to deduce with high accuracy the internal rotation velocity of the Sun, as function of radius and latitude. This also allows us to study some global astrophysical properties of the Sun, such as the angular momentum, the grativational quadrupole moment and the effect of distortion induced on the surface (oblateness). The helioseismic approach and what we have learnt from it during the last decades about the interior of the Sun are reviewed here.Comment: 36 page

    Helioseismology

    No full text
    International audienceHelioseismology, the study of solar oscillations, has proved to be an extremely powerful tool for the investigation of the internal structure and dynamics of the Sun. Here I will review the present status of helioseismic studies and comment on recent results and on prospects for future investigations to solve the most discussed open questions associated with solar structure modelling

    Majorana and the theoretical problem of photon-electron scattering

    Get PDF
    Relevant contributions by Majorana regarding Compton scattering off free or bound electrons are considered in detail, where a (full quantum) generalization of the Kramers-Heisenberg dispersion formula is derived. The role of intermediate electronic states is appropriately pointed out in recovering the standard Klein-Nishina formula (for free electron scattering) by making recourse to a limpid physical scheme alternative to the (then unknown) Feynman diagram approach. For bound electron scattering, a quantitative description of the broadening of the Compton line was obtained for the first time by introducing a finite mean life for the excited state of the electron system. Finally, a generalization aimed to describe Compton scattering assisted by a non-vanishing applied magnetic field is as well considered, revealing its relevance for present day research.Comment: latex, amsart, 10 pages, 1 figur
    corecore