430 research outputs found

    Cloaking and anamorphism for light and mass diffusion

    Full text link
    We first review classical results on cloaking and mirage effects for electromagnetic waves. We then show that transformation optics allows the masking of objects or produces mirages in diffusive regimes. In order to achieve this, we consider the equation for diffusive photon density in transformed coordinates, which is valid for diffusive light in scattering media. More precisely, generalizing transformations for star domains introduced in [Diatta and Guenneau, J. Opt. 13, 024012, 2011] for matter waves, we numerically demonstrate that infinite conducting objects of different shapes scatter diffusive light in exactly the same way. We also propose a design of external light-diffusion cloak with spatially varying sign-shifting parameters that hides a finite size scatterer outside the cloak. We next analyse non-physical parameter in the transformed Fick's equation derived in [Guenneau and Puvirajesinghe, R. Soc. Interface 10, 20130106, 2013], and propose to use a non-linear transform that overcomes this problem. We finally investigate other form invariant transformed diffusion-like equations in the time domain, and touch upon conformal mappings and non-Euclidean cloaking applied to diffusion processes.Comment: 42 pages, Latex, 14 figures. V2: Major changes : some formulas corrected, some extra cases added, overall length extended from 21 pages (V1) to 42 pages (present version V2). The last version will appear at Journal of Optic

    Numerical Analysis of Three-dimensional Acoustic Cloaks and Carpets

    Full text link
    We start by a review of the chronology of mathematical results on the Dirichlet-to-Neumann map which paved the way towards the physics of transformational acoustics. We then rederive the expression for the (anisotropic) density and bulk modulus appearing in the pressure wave equation written in the transformed coordinates. A spherical acoustic cloak consisting of an alternation of homogeneous isotropic concentric layers is further proposed based on the effective medium theory. This cloak is characterised by a low reflection and good efficiency over a large bandwidth for both near and far fields, which approximates the ideal cloak with a inhomogeneous and anisotropic distribution of material parameters. The latter suffers from singular material parameters on its inner surface. This singularity depends upon the sharpness of corners, if the cloak has an irregular boundary, e.g. a polyhedron cloak becomes more and more singular when the number of vertices increases if it is star shaped. We thus analyse the acoustic response of a non-singular spherical cloak designed by blowing up a small ball instead of a point, as proposed in [Kohn, Shen, Vogelius, Weinstein, Inverse Problems 24, 015016, 2008]. The multilayered approximation of this cloak requires less extreme densities (especially for the lowest bound). Finally, we investigate another type of non-singular cloaks, known as invisibility carpets [Li and Pendry, Phys. Rev. Lett. 101, 203901, 2008], which mimic the reflection by a flat ground.Comment: Latex, 21 pages, 7 Figures, last version submitted to Wave Motion. OCIS Codes: (000.3860) Mathematical methods in physics; (260.2110) Electromagnetic theory; (160.3918) Metamaterials; (160.1190) Anisotropic optical materials; (350.7420) Waves; (230.1040) Acousto-optical devices; (160.1050) Acousto-optical materials; (290.5839) Scattering,invisibility; (230.3205) Invisibility cloak

    Focusing: coming to the point in metamaterials

    Full text link
    The point of the paper is to show some limitations of geometrical optics in the analysis of subwavelength focusing. We analyze the resolution of the image of a line source radiating in the Maxwell fisheye and the Veselago-Pendry slab lens. The former optical medium is deduced from the stereographic projection of a virtual sphere and displays a heterogeneous refractive index n(r) which is proportional to the inverse of 1+r^2. The latter is described by a homogeneous, but negative, refractive index. It has been suggested that the fisheye makes a perfect lens without negative refraction [Leonhardt, Philbin arxiv:0805.4778v2]. However, we point out that the definition of super-resolution in such a heterogeneous medium should be computed with respect to the wavelength in a homogenized medium, and it is perhaps more adequate to talk about a conjugate image rather than a perfect image (the former does not necessarily contains the evanescent components of the source). We numerically find that both the Maxwell fisheye and a thick silver slab lens lead to a resolution close to lambda/3 in transverse magnetic polarization (electric field pointing orthogonal to the plane). We note a shift of the image plane in the latter lens. We also observe that two sources lead to multiple secondary images in the former lens, as confirmed from light rays travelling along geodesics of the virtual sphere. We further observe resolutions ranging from lambda/2 to nearly lambda/4 for magnetic dipoles of varying orientations of dipole moments within the fisheye in transverse electric polarization (magnetic field pointing orthogonal to the plane). Finally, we analyse the Eaton lens for which the source and its image are either located within a unit disc of air, or within a corona 1<r<2 with refractive index n(r)=2/r1n(r)=\sqrt{2/r-1}. In both cases, the image resolution is about lambda/2.Comment: Version 2: 22 pages, 11 figures. More figures added, additional cases discussed. Misprints corrected. Keywords: Maxwell fisheye, Eaton lens; Non-Euclidean geometry; Stereographic projection; Transformation optics; Metamaterials; Perfect lens. The last version appears at J. Modern Opt. 57 (2010), no. 7, 511-52
    corecore