163 research outputs found
Comment on "Spin relaxation in quantum Hall systems"
W. Apel and Yu.A. Bychkov have recently considered the spin relaxation in a
2D quantum Hall system for the filling factor close to unity [PRL v.82, 3324
(1999)]. The authors considered only one spin flip mechanism (direct
spin-phonon coupling) among several possible spin-orbit related ones and came
to the conclusion that the spin relaxation time due to this mechanism is quite
short: around s at B=10 T (for GaAs). This time is much shorter than
the typical time ( s) obtained earlier by D. Frenkel while considering
the spin relaxation of 2D electrons in a quantizing magnetic field without the
Coulomb interaction and for the same spin-phonon coupling. I show that the
authors' conclusion about the value of the spin-flip time is wrong and have
deduced the correct time which is by several orders of magnitude longer. I also
discuss the admixture mechanism of the spin-orbit interaction.Comment: 1 pag
Gate-Controlled Electron Spin Resonance in a GaAs/AlGaAs Heterostructure
The electron spin resonance (ESR) of two-dimensional electrons is
investigated in a gated GaAs/AlGaAs heterostructure. We found that the ESR
resonance frequency can be turned by means of a gate voltage. The front and
back gates of the heterostructure produce opposite g-factor shift, suggesting
that electron g-factor is being electrostatically controlled by shifting the
equilibrium position of the electron wave function from one epitaxial layer to
another with different g-factors
Spin Relaxation in a Quantized Hall Regime in Presence of a Disorder
We study the spin relaxation (SR) of a two-dimensional electron gas (2DEG) in
the quantized Hall regime and discuss the role of spatial inhomogeneity effects
on the relaxation. The results are obtained for small filling factors () or when the filling factor is close to an integer. In either case SR times
are essentially determined by a smooth random potential. For small we
predict a "magneto-confinement" resonance manifested in the enhancement of the
SR rate when the Zeeman energy is close to the spacing of confinement sublevels
in the low-energy wing of the disorder-broadened Landau level. In the resonant
region the -dependence of the SR time has a peculiar non-monotonic shape. If
, the SR is going non-exponentially. Under typical conditions
the calculated SR times range from to s.Comment: 10 pages, 1 figure. To appear in JETP Letter
Nuclear Spin Relaxation for Higher Spin
We study the relaxation of a spin I that is weakly coupled to a quantum
mechanical environment. Starting from the microscopic description, we derive a
system of coupled relaxation equations within the adiabatic approximation.
These are valid for arbitrary I and also for a general stationary
non--equilibrium state of the environment. In the case of equilibrium, the
stationary solution of the equations becomes the correct Boltzmannian
equilibrium distribution for given spin I. The relaxation towards the
stationary solution is characterized by a set of relaxation times, the longest
of which can be shorter, by a factor of up to 2I, than the relaxation time in
the corresponding Bloch equations calculated in the standard perturbative way.Comment: 4 pages, Latex, 2 figure
Anomalous magnetic splitting of the Kondo resonance
The splitting of the Kondo resonance in the density of states of an Anderson
impurity in finite magnetic field is calculated from the exact Bethe-ansatz
solution. The result gives an estimate of the electron spectral function for
nonzero magnetic field and Kondo temperature, with consequences for transport
experiments on quantum dots in the Kondo regime. The strong correlations of the
Kondo ground state cause a significant low-temperature reduction of the peak
splitting. Explicit formulae are found for the shift and broadening of the
Kondo peaks. A likely cause of the problems of large-N approaches to spin-1/2
impurities at finite magnetic field is suggested.Comment: 4 pages, 2 eps figures; published versio
Observation of two relaxation mechanisms in transport between spin split edge states at high imbalance
Using a quasi-Corbino geometry to directly study electron transport between
spin-split edge states, we find a pronounced hysteresis in the I-V curves,
originating from slow relaxation processes. We attribute this long-time
relaxation to the formation of a dynamic nuclear polarization near the sample
edge. The determined characteristic relaxation times are 25 s and 200 s which
points to the presence of two different relaxation mechanisms. The two time
constants are ascribed to the formation of a local nuclear polarization due to
flip-flop processes and the diffusion of nuclear spins.Comment: Submitted to PR
Electron spin coherence in semiconductors: Considerations for a spin-based solid state quantum computer architecture
We theoretically consider coherence times for spins in two quantum computer
architectures, where the qubit is the spin of an electron bound to a P donor
impurity in Si or within a GaAs quantum dot. We show that low temperature
decoherence is dominated by spin-spin interactions, through spectral diffusion
and dipolar flip-flop mechanisms. These contributions lead to 1-100 s
calculated spin coherence times for a wide range of parameters, much higher
than former estimates based on measurements.Comment: Role of the dipolar interaction clarified; Included discussion on the
approximations employed in the spectral diffusion calculation. Final version
to appear in Phys. Rev.
Strong, Ultra-narrow Peaks of Longitudinal and Hall Resistances in the Regime of Breakdown of the Quantum Hall Effect
With unusually slow and high-resolution sweeps of magnetic field, strong,
ultra-narrow (width down to ) resistance peaks are observed in
the regime of breakdown of the quantum Hall effect. The peaks are dependent on
the directions and even the history of magnetic field sweeps, indicating the
involvement of a very slow physical process. Such a process and the sharp peaks
are, however, not predicted by existing theories. We also find a clear
connection between the resistance peaks and nuclear spin polarization.Comment: 5 pages with 3 figures. To appear in PR
Topological defects and Goldstone excitations in domain walls between ferromagnetic quantum Hall effect liquids
It is shown that the low-energy spectrum of a ferromagnetic quantum Hall
effect liquid in a system with a multi-domain structure generated by an
inhomogeneous bare Zeeman splitting is formed by excitations
localized at the walls between domains. For a step-like , the
domain wall spectrum includes a spin-wave with a linear dispersion and a small
gap due to spin-orbit coupling, and a low-energy topological defects. The
latter are charged and may dominate in the transport under conditions that the
percolation through the network of domain walls is provided.Comment: 4 pages, 1 fi
Dynamic nuclear polarization at the edge of a two-dimensional electron gas
We have used gated GaAs/AlGaAs heterostructures to explore nonlinear
transport between spin-resolved Landau level (LL) edge states over a submicron
region of two-dimensional electron gas (2DEG). The current I flowing from one
edge state to the other as a function of the voltage V between them shows
diode-like behavior---a rapid increase in I above a well-defined threshold V_t
under forward bias, and a slower increase in I under reverse bias. In these
measurements, a pronounced influence of a current-induced nuclear spin
polarization on the spin splitting is observed, and supported by a series of
NMR experiments. We conclude that the hyperfine interaction plays an important
role in determining the electronic properties at the edge of a 2DEG.Comment: 8 pages RevTeX, 7 figures (GIF); submitted to Phys. Rev.
- …
