895 research outputs found
Solitonic Excitations in Linearly Coherent Channels of Bilayer Quantum Hall Stripes
In some range of interlayer distances, the ground state of the
two-dimensional electron gas at filling factor nu =4N+1 with N=0,1,2,... is a
coherent stripe phase in the Hartree-Fock approximation. This phase has
one-dimensional coherent channels that support charged excitations in the form
of pseudospin solitons. In this work, we compute the transport gap of the
coherent striped phase due to the creation of soliton-antisoliton pairs using a
supercell microscopic unrestricted Hartree-Fock approach. We study this gap as
a function of interlayer distance and tunneling amplitude. Our calculations
confirm that the soliton-antisoliton excitation energy is lower than the
corresponding Hartree-Fock electron-hole pair energy. We compare our results
with estimates of the transport gap obtained from a field-theoretic model valid
in the limit of slowly varying pseudospin textures.Comment: 15 pages, 8 figure
Early intervention (mobilization or active exercise) for critically ill adults in the intensive care unit
Dynamical matrix of two-dimensional electron crystals
In a quantizing magnetic field, the two-dimensional electron (2DEG) gas has a
rich phase diagram with broken translational symmetry phases such as Wigner,
bubble, and stripe crystals. In this paper, we derive a method to get the
dynamical matrix of these crystals from a calculation of the density response
function performed in the Generalized Random Phase Approximation (GRPA). We
discuss the validity of our method by comparing the dynamical matrix calculated
from the GRPA with that obtained from standard elasticity theory with the
elastic coefficients obtained from a calculation of the deformation energy of
the crystal.Comment: Revised version published in Phys. Rev. B. 12 pages with 11
postscripts figure
Electrical transport through a single-electron transistor strongly coupled to an oscillator
We investigate electrical transport through a single-electron transistor
coupled to a nanomechanical oscillator. Using a combination of a
master-equation approach and a numerical Monte Carlo method, we calculate the
average current and the current noise in the strong-coupling regime, studying
deviations from previously derived analytic results valid in the limit of
weak-coupling. After generalizing the weak-coupling theory to enable the
calculation of higher cumulants of the current, we use our numerical approach
to study how the third cumulant is affected in the strong-coupling regime. In
this case, we find an interesting crossover between a weak-coupling transport
regime where the third cumulant heavily depends on the frequency of the
oscillator to one where it becomes practically independent of this parameter.
Finally, we study the spectrum of the transport noise and show that the two
peaks found in the weak-coupling limit merge on increasing the coupling
strength. Our calculation of the frequency-dependence of the noise also allows
to describe how transport-induced damping of the mechanical oscillations is
affected in the strong-coupling regime.Comment: 11 pages, 9 figure
Anisotropic states of two-dimensional electrons in high magnetic fields
We study the collective states formed by two-dimensional electrons in Landau
levels of index near half-filling. By numerically solving the
self-consistent Hartree-Fock (HF) equations for a set of oblique
two-dimensional lattices, we find that the stripe state is an anisotropic
Wigner crystal (AWC), and determine its precise structure for varying values of
the filling factor. Calculating the elastic energy, we find that the shear
modulus of the AWC is small but finite (nonzero) within the HF approximation.
This implies, in particular, that the long-wavelength magnetophonon mode in the
stripe state vanishes like as in an ordinary Wigner crystal, and not
like as was found in previous studies where the energy of shear
deformations was neglected.Comment: minor corrections; 5 pages, 4 figures; version to be published in
Physical Review Letter
Recommended from our members
Does self-assessed health measure health?
Despite concerns about reporting biases and interpretation, self-assessed health (SAH) remains the measure of health most used by researchers, in part reflecting its ease of collection and in part the observed correlation between SAH and objective measures of health. Using a unique Australian data set, which consists of survey data linked to administrative individual medical records, we present empirical evidence demonstrating that SAH indeed predicts future health, as measured by hospitalizations, out-of-hospital medical services and prescription drugs. Our large sample size allows very disaggregate analysis and we find that SAH predicts more serious, chronic illnesses better than less serious illnesses. Finally, we compare the predictive power of SAH relative to administrative data and an extensive set of self-reported health measures; SAH does not add to the predictive power of future utilization when the administrative data is included and improves prediction only marginally when the extensive survey-based health measures are included. Clearly there is value in the more extensive survey and administrative health data as well as greater cost of collection
Field-dependent heat transport in the Kondo insulator SmB6 : phonons scattered by magnetic impurities
The thermal conductivity of the Kondo insulator SmB was measured
at low temperature, down to 70 mK, in magnetic fields up to 15 T, on single
crystals grown using both the floating-zone and the flux methods. The residual
linear term at is found to be zero in all samples, for
all magnetic fields, in agreement with previous studies. There is therefore no
clear evidence of fermionic heat carriers. In contrast to some prior data, we
observe a large enhancement of with increasing field. The effect of
field is anisotropic, depending on the relative orientation of field and heat
current (parallel or perpendicular), and with respect to the cubic crystal
structure. We interpret our data in terms of heat transport predominantly by
phonons, which are scattered by magnetic impurities.Comment: publish versio
Reconstruction of the Fermi surface in the pseudogap state of cuprates
Reconstruction of the Fermi surface of high-temperature superconducting
cuprates in the pseudogap state is analyzed within nearly exactly solvable
model of the pseudogap state, induced by short-range order fluctuations of
antiferromagnetic (AFM, spin density wave (SDW), or similar charge density wave
(CDW)) order parameter, competing with superconductivity. We explicitly
demonstrate the evolution from "Fermi arcs" (on the "large" Fermi surface)
observed in ARPES experiments at relatively high temperatures (when both the
amplitude and phase of density waves fluctuate randomly) towards formation of
typical "small" electron and hole "pockets", which are apparently observed in
de Haas - van Alfen and Hall resistance oscillation experiments at low
temperatures (when only the phase of density waves fluctuate, and correlation
length of the short-range order is large enough). A qualitative criterion for
quantum oscillations in high magnetic fields to be observable in the pseudogap
state is formulated in terms of cyclotron frequency, correlation length of
fluctuations and Fermi velocity.Comment: 4 pages, 3 figure
- …
