9,704 research outputs found

    Combined quantum state preparation and laser cooling of a continuous beam of cold atoms

    Get PDF
    We use two-laser optical pumping on a continuous atomic fountain in order to prepare cold cesium atoms in the same quantum ground state. A first laser excites the F=4 ground state to pump the atoms toward F=3 while a second pi-polarized laser excites the F=3 -> F'=3 transition of the D2 line to produce Zeeman pumping toward m=0. To avoid trap states, we implement the first laser in a 2D optical lattice geometry, thereby creating polarization gradients. This configuration has the advantage of simultaneously producing Sisyphus cooling when the optical lattice laser is tuned between the F=4 -> F'=4 and F=4 -> F'=5 transitions of the D2 line, which is important to remove the heat produced by optical pumping. Detuning the frequency of the second pi-polarized laser reveals the action of a new mechanism improving both laser cooling and state preparation efficiency. A physical interpretation of this mechanism is discussed.Comment: Minor changes according to the recommendations of the referee: - Corrected Fig.1. - Split the graph of Fig.6 for clarity. - Added one reference. - Added two remarks in the conclusion. - Results unchange

    Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules

    Full text link
    Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate --creating quantum superpositions-- and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models.Comment: accepted by NATURE Scientific Reports, 12 pages, 1 figures, 2 table

    Aspects of geodesical motion with Fisher-Rao metric: classical and quantum

    Get PDF
    The purpose of this article is to exploit the geometric structure of Quantum Mechanics and of statistical manifolds to study the qualitative effect that the quantum properties have in the statistical description of a system. We show that the end points of geodesics in the classical setting coincide with the probability distributions that minimise Shannon's Entropy, i.e. with distributions of zero dispersion. In the quantum setting this happens only for particular initial conditions, which in turn correspond to classical submanifolds. This result can be interpreted as a geometric manifestation of the uncertainty principle.Comment: 15 pages, 5 figure

    La valutazione del merito creditizio in agricoltura alla luce dell’Accordo Basilea 2: un applicazione ad un’impresa floricola

    Get PDF
    The markets’ globalisation induces the national agriculture sector to improve its competitiveness by structural adjustment of the farms. This process requires financial resources so that new and more intensive relations will be necessary between bank and farm. From this point of view the new agreement named Basilea 2 is seen as a potential threat that may reduce the capability to credit access for the agricultural entrepreneurs. For this reason this study has verified the principal aspects that will influence the assessment of the farms’ rating by applying the procedure in a floricultural farm. A sensitive analysis has been developed in order to evaluate if the new agreement constitutes a threat or an opportunity for the farm in receiving funds from the bank

    Resistance to Ralstonia Solanacearum of sexual hybrids between Solanum commersonii and S. tuberosum

    Get PDF
    This research was carried out to study the levels of bacterial wilt resistance and genetic diversity of (near) pentaploid sexual hybrids between S. commersonii (2n = 2x = 24, 1EBN) and cultivated S. tuberosum. Following artificial inoculations with Ralstonia solanacearum, wilting degree was estimated on a scale from 0 to 4, and seven genotypes of 26 (27%) displaying a S. commersonii like behavior were identified. Latent bacterial colonizations were detected in roots of symptomless S. commersonii and hybrids, whereas no bacterial populations were detected within stems. This suggests that the movement and/or growth of the bacterium in the aerial part were strongly inhibited. A molecular study with AFLP markers clustered hybrids into nine groups and provided evidence that resistant hybrids were slightly more similar to cultivated S. tuberosum than to the wild parent. This is important in view of the re-establishment of the cultivated genetic background through backcrosses. Hybrids displayed good fertility and are being used for further breeding efforts

    Caccia alle “cimici” aliene: il ruolo del disinfestatore

    Get PDF
    Vengono descritte le linee guida sul comportamento da tenere da parte di cittadini e disinfestatori nel caso di infestazioni da cimici asiatiche Halyomorpha halys dentro alle abitazion

    Strongly correlated double Dirac fermions

    Full text link
    Double Dirac fermions have recently been identified as possible quasiparticles hosted by three-dimensional crystals with particular non-symmorphic point group symmetries. Applying a combined approach of ab-initio methods and dynamical mean field theory, we investigate how interactions and double Dirac band topology conspire to form the electronic quantum state of Bi2_2CuO4_4. We derive a downfolded eight-band model of the pristine material at low energies around the Fermi level. By tuning the model parameters from the free band structure to the realistic strongly correlated regime, we find a persistence of the double Dirac dispersion until its constituting time reveral symmetry is broken due to the onset of magnetic ordering at the Mott transition. We analyze pressure as a promising route to realize a double-Dirac metal in Bi2_2CuO4_4

    Hamilton-Jacobi approach to Potential Functions in Information Geometry

    Get PDF
    The search for a potential function SS allowing to reconstruct a given metric tensor gg and a given symmetric covariant tensor TT on a manifold M\mathcal{M} is formulated as the Hamilton-Jacobi problem associated with a canonically defined Lagrangian on TMT\mathcal{M}. The connection between this problem, the geometric structure of the space of pure states of quantum mechanics, and the theory of contrast functions of classical information geometry is outlined.Comment: 16 pages. A discussion on the Kullback-Leibler divergence has been added. To appear in Journal of Mathematical Physic

    A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells

    Get PDF
    We have manufactured more than 250 nominally identical paraffin-coated Cs vapor cells (30 mm diameter bulbs) for multi-channel atomic magnetometer applications. We describe our dedicated cell characterization apparatus. For each cell we have determined the intrinsic longitudinal, \sGamma{01}, and transverse, \sGamma{02}, relaxation rates. Our best cell shows \sGamma{01}/2\pi\approx 0.5 Hz, and \sGamma{02}/2\pi\approx 2 Hz. We find a strong correlation of both relaxation rates which we explain in terms of reservoir and spin exchange relaxation. For each cell we have determined the optimal combination of rf and laser powers which yield the highest sensitivity to magnetic field changes. Out of all produced cells, 90% are found to have magnetometric sensitivities in the range of 9 to 30 fTHz. Noise analysis shows that the magnetometers operated with such cells have a sensitivity close to the fundamental photon shot noise limit
    corecore