160 research outputs found
Cyclists’ interactions with professional and non-professional drivers: Observations and game theoretic models
According to crash data reports, most collisions between cyclists and motorized vehicles occur at unsignalized intersections (where no traffic lights regulate vehicle priority). In the era of automated driving, it is imperative for automated vehicles to ensure the safety of cyclists, especially at these intersections. In other words, to safely interact with cyclists, automated vehicles need models that can describe how cyclists cross and yield at intersections. So far, only a few studies have modeled the interaction between cyclists and motorized vehicles at intersections, and none of them have explored the variations in interaction outcomes based on the type of drivers involved. In this study, we compare non-professional drivers (represented by passenger car drivers) and professional drivers (truck and taxi drivers). We also introduce a novel application of game theory by comparing logit and game theoretic models’ analyses of the interactions between cyclists and motorized vehicles, leveraging naturalistic data. Interaction events were extracted from a trajectory dataset, and cyclists’ non-kinematic cues were extracted from videos and incorporated into the interaction events’ data. The modeling outputs showed that professional drivers are less likely to yield to cyclists than non-professional drivers. Furthermore, the behavioral game theoretic models outperformed the logit models in predicting cyclists’ crossing decisions
Tomato (Solanum lycopersicum L.) accumulation and allergenicity in response to nickel stress
Vegetables represent a major source of Ni exposure. Environmental contamination and cultural practices can increase Ni amount in tomato posing significant risk for human health. This work assesses the tomato (Solanum lycopersicum L.) response to Ni on the agronomic yield of fruits and the related production of allergens. Two cultivars were grown in pots amended with Ni 0, 30, 60, 120, and 300 mg kg 121, respectively. XRF and ICP-MS analyses highlighted the direct increase of fruit Ni content compared to soil Ni, maintaining a stable biomass. Leaf water content increased at Ni 300 mg kg 121. Total protein content and individual allergenic components were investigated using biochemical (RP-HPLC and N-terminal amino acid sequencing) and immunological (inhibition tests of IgE binding by SPHIAa assay on the FABER testing system) methodologies. Ni affected the fruit tissue concentration of pathogenesis-related proteins and relevant allergens (LTP, profilin, Bet v 1-like protein and TLP). This study elucidates for the first time that tomato reacts to exogenous Ni, uptaking the metal while changing its allergenic profiles, with potential double increasing of exposure risks for consumers. This evidence highlighted the importance of adequate choice of low-Ni tomato cultivars and practices to reduce Ni uptake by potentially contaminated matrices
CD99 drives terminal differentiation of osteosarcoma cells by acting as a spatial regulator of ERK 1/2.
Role of serum-free light chain assay for defining response and progression in immunoglobulin secretory multiple myeloma
The International Myeloma Working Group (IMWG) guidelines recommend using electrophoresis and immunofixation to define response and progressive disease (PD) in immunoglobulin (Ig) secretory multiple myeloma (Ig-MM), whereas the role of serum-free light chain (sFLC) is controversial. We retrospectively analyzed the value of adding sFLC assays in the definition of response and PD according to IMWG criteria in 339 Ig-MM patients treated with a first-line novel agent-based therapy (median follow-up 54 months). sFLC PD was defined according to conventional criteria plus increased sFLC levels, or sFLC escape (sFLCe); progression/sFLCe-free survival (ePFS) was the time from the start of treatment to the date of first PD or sFLCe, or death; overall survival after PD/sFLCe (OS after Pe) was the time from first PD or sFLCe to the date of death. 148 (44%) patients achieved a complete response and 198 (60%) a normal sFLC ratio (sFLCR). sFLCR normalization was an independent prognostic factor for extended PFS (HR = 0.46, p = 0.001) and OS (HR = 0.47, p = 0.006) by multivariable analysis. 175 (52%) patients experienced PD according to the IMWG criteria, whereas 180 (53%) experienced PD or sFLCe. Overall, a sFLCe was observed in 31 (9%) patients. Median PFS and ePFS were both equal to 36 (95% CI = 32–42, and 32–40, respectively) months. sFLC PD adversely affected the OS after Pe compared to PD with increasing monoclonal Ig only (HR = 0.52, p = 0.012). Our results support the inclusion of the sFLC assay for defining response and PD in Ig-MM
Biofeedback for training balance and mobility tasks in older populations: a systematic review
<p>Abstract</p> <p>Context</p> <p>An effective application of biofeedback for interventions in older adults with balance and mobility disorders may be compromised due to co-morbidity.</p> <p>Objective</p> <p>To evaluate the feasibility and the effectiveness of biofeedback-based training of balance and/or mobility in older adults.</p> <p>Data Sources</p> <p>PubMed (1950-2009), EMBASE (1988-2009), Web of Science (1945-2009), the Cochrane Controlled Trials Register (1960-2009), CINAHL (1982-2009) and PsycINFO (1840-2009). The search strategy was composed of terms referring to biofeedback, balance or mobility, and older adults. Additional studies were identified by scanning reference lists.</p> <p>Study Selection</p> <p>For evaluating effectiveness, 2 reviewers independently screened papers and included controlled studies in older adults (i.e. mean age equal to or greater than 60 years) if they applied biofeedback during repeated practice sessions, and if they used at least one objective outcome measure of a balance or mobility task.</p> <p>Data Extraction</p> <p>Rating of study quality, with use of the Physiotherapy Evidence Database rating scale (PEDro scale), was performed independently by the 2 reviewers. Indications for (non)effectiveness were identified if 2 or more similar studies reported a (non)significant effect for the same type of outcome. Effect sizes were calculated.</p> <p>Results and Conclusions</p> <p>Although most available studies did not systematically evaluate feasibility aspects, reports of high participation rates, low drop-out rates, absence of adverse events and positive training experiences suggest that biofeedback methods can be applied in older adults. Effectiveness was evaluated based on 21 studies, mostly of moderate quality. An indication for effectiveness of visual feedback-based training of balance in (frail) older adults was identified for postural sway, weight-shifting and reaction time in standing, and for the Berg Balance Scale. Indications for added effectiveness of applying biofeedback during training of balance, gait, or sit-to-stand transfers in older patients post-stroke were identified for training-specific aspects. The same applies for auditory feedback-based training of gait in older patients with lower-limb surgery.</p> <p>Implications</p> <p>Further appropriate studies are needed in different populations of older adults to be able to make definitive statements regarding the (long-term) added effectiveness, particularly on measures of functioning.</p
Could sound be used as a strategy for reducing symptoms of perceived motion sickness?
<p>Abstract</p> <p>Background</p> <p>Working while exposed to motions, physically and psychologically affects a person. Traditionally, motion sickness symptom reduction has implied use of medication, which can lead to detrimental effects on performance. Non-pharmaceutical strategies, in turn, often require cognitive and perceptual attention. Hence, for people working in high demand environments where it is impossible to reallocate focus of attention, other strategies are called upon. The aim of the study was to investigate possible impact of a mitigation strategy on perceived motion sickness and psychophysiological responses, based on an artificial sound horizon compared with a non-positioned sound source.</p> <p>Methods</p> <p>Twenty-three healthy subjects were seated on a motion platform in an artificial sound horizon or in non-positioned sound, in random order with one week interval between the trials. Perceived motion sickness (Mal), maximum duration of exposure (ST), skin conductance, blood volume pulse, temperature, respiration rate, eye movements and heart rate were measured continuously throughout the trials.</p> <p>Results</p> <p>Mal scores increased over time in both sound conditions, but the artificial sound horizon, applied as a mitigation strategy for perceived motion sickness, showed no significant effect on Mal scores or ST. The number of fixations increased with time in the non-positioned sound condition. Moreover, fixation time was longer in the non-positioned sound condition compared with sound horizon, indicating that the subjects used more time to fixate and, hence, assumingly made fewer saccades.</p> <p>Conclusion</p> <p>A subliminally presented artificial sound horizon did not significantly affect perceived motion sickness, psychophysiological variables or the time the subjects endured the motion sickness triggering stimuli. The number of fixations and fixation times increased over time in the non-positioned sound condition.</p
The role of lipid peroxidation products and oxidative stress in activation of the canonical wingless-type MMTV integration site (WNT) pathway in a rat model of diabetic retinopathy
Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control
The influence of attention on the dynamical structure of postural sway was examined in 30 healthy young adults by manipulating the focus of attention. In line with the proposed direct relation between the amount of attention invested in postural control and regularity of center-of-pressure (COP) time series, we hypothesized that: (1) increasing cognitive involvement in postural control (i.e., creating an internal focus by increasing task difficulty through visual deprivation) increases COP regularity, and (2) withdrawing attention from postural control (i.e., creating an external focus by performing a cognitive dual task) decreases COP regularity. We quantified COP dynamics in terms of sample entropy (regularity), standard deviation (variability), sway-path length of the normalized posturogram (curviness), largest Lyapunov exponent (local stability), correlation dimension (dimensionality) and scaling exponent (scaling behavior). Consistent with hypothesis 1, standing with eyes closed significantly increased COP regularity. Furthermore, variability increased and local stability decreased, implying ineffective postural control. Conversely, and in line with hypothesis 2, performing a cognitive dual task while standing with eyes closed led to greater irregularity and smaller variability, suggesting an increase in the “efficiency, or “automaticity” of postural control”. In conclusion, these findings not only indicate that regularity of COP trajectories is positively related to the amount of attention invested in postural control, but also substantiate that in certain situations an increased internal focus may in fact be detrimental to postural control
The effects of different sensory augmentation on weight-shifting balance exercises in Parkinson’s disease and healthy elderly people: a proof-of-concept study
- …
