2,020 research outputs found

    Fairness of performance evaluation procedures and job satisfaction: the role of outcome-based and non-outcome based effects

    Get PDF
    Prior management accounting studies on fairness perceptions have overlooked two important issues. First, no prior management accounting studies have investigated how procedural fairness, by itself, affects managers' job satisfaction. Second, management accounting researchers have not demonstrated how conflicting theories on procedural fairness can be integrated and explained in a coherent manner. Our model proposes that fairness of procedures for performance evaluation affects job satisfaction through two distinct processes. The first is out-come-based through fairness of outcomes (distributive fairness). The second is non-outcome-based through trust in superior and organisational commitment. Based on a sample of 110 managers, the results indicate that while procedural fairness perceptions affect job satisfaction through both processes, the non-outcome-based process is much stronger than the outcome-based process. These results may be used to develop a unified theory on procedural fairness effects

    Impact of Type Ia Supernova Ejecta on a Helium-star Binary Companion

    Full text link
    The impact of Type Ia supernova ejecta on a helium-star companion is investigated via high-resolution, two-dimensional hydrodynamic simulations. For a range of helium-star models and initial binary separations it is found that the mass unbound in the interaction, δMub\delta M_{\rm ub}, is related to the initial binary separation, aa, by a power law of the form δMubam\delta M_{\rm ub} \propto a^{m}. This power-law index is found to vary from -3.1 to -4.0, depending on the mass of the helium star. The small range of this index brackets values found previously for hydrogen-rich companions, suggesting that the dependence of the unbound mass on orbital separation is not strongly sensitive to the nature of the binary companion. The kick velocity is also related to the initial binary separation by a power law with an index in a range from -2.7 to -3.3, but the power-law index differs from those found in previous studies for hydrogen-rich companions. The space motion of the companion after the supernova is dominated by its orbital velocity in the pre-supernova binary system. The level of Ni/Fe contamination of the companion resulting from the passage of the supernova ejecta is difficult to estimate, but an upper limit on the mass of bound nickel is found to be 5×104 M\sim 5\times 10^{-4}\ M_\odot.Comment: Accepted in ApJ, 9 pages, 9 figure

    Modelling the formation of double white dwarfs

    Get PDF
    We investigate the formation of the ten double-lined double white dwarfs that have been observed so far. A detailed stellar evolution code is used to calculate grids of single-star and binary models and we use these to reconstruct possible evolutionary scenarios. We apply various criteria to select the acceptable solutions from these scenarios. We confirm the conclusion of Nelemans et al. (2000) that formation via conservative mass transfer and a common envelope with spiral-in based on energy balance or via two such spiralins cannot explain the formation of all observed systems. We investigate three different prescriptions of envelope ejection due to dynamical mass loss with angular-momentum balance and show that they can explain the observed masses and orbital periods well. Next, we demand that the age difference of our model is comparable to the observed cooling-age difference and show that this puts a strong constraint on the model solutions. However, the scenario in which the primary loses its envelope in an isotropic wind and the secondary transfers its envelope, which is then re-emitted isotropically, can explain the observed age differences as well. One of these solutions explains the DB-nature of the oldest white dwarf in PG1115+116 along the evolutionary scenario proposed by Maxted et al. (2002a), in which the helium core of the primary becomes exposed due to envelope ejection, evolves into a giant phase and loses its hydrogen-rich outer layers.Comment: 20 pages, 17 figures, 6 tables, accepted for publication in Astronomy and Astrophysics. See http://www.astro.uu.nl/~sluys/publications/ for high-resolution versions of Figs. 15 and 1

    Reduced magnetic braking and the magnetic capture model for the formation of ultra-compact binaries

    Full text link
    A binary in which a slightly evolved star starts mass transfer to a neutron star can evolve towards ultra-short orbital periods under the influence of magnetic braking. This is called magnetic capture. In a previous paper we showed that ultra-short periods are only reached for an extremely small range of initial binary parameters, in particular orbital period and donor mass. Our conclusion was based on one specific choice for the law of magnetic braking, and for the loss of mass and angular momentum during mass transfer. In this paper we show that for less efficient magnetic braking it is impossible to evolve to ultra-short periods, independent of the amount of mass and associated angular momentum lost from the binary.Comment: 7 pages, 7 figures, accepted for publication in Astronomy and Astrophysics. See http://www.astro.uu.nl/~sluys/PhD

    The Evolutionary Status of SS433

    Get PDF
    We consider possible evolutionary models for SS 433. We assume that common-envelope evolution is avoided if radiation pressure is able to expel most of a super-Eddington accretion flow from a region smaller than the accretor's Roche lobe. This condition is satisfied, at least initially, for largely radiative donors with masses in the range 4-12 solar masses. For donors more massive than about 5 solar masses, moderate mass ratios q = M_2/M_1 > 1 are indicated, thus tending to favor black-hole accretors. For lower mass donors, evolutionary considerations do not distinguish between a neutron star or black hole accretor. In all cases the mass transfer (and mass loss) rates are much larger than the likely mass-loss rate in the precessing jets. Almost all of the transferred mass is expelled at radii considerably larger than the jet acceleration region, producing the "stationary" H-alpha line, the infrared luminosity, and accounting for the low X-ray luminosity.Comment: 13 pages, Astrophysical Journal Letters, accepte

    Alignment Timescale of the Microquasar GRO J1655-40

    Full text link
    The microquasar GRO J1655-40 has a black hole with spin angular momentum apparently misaligned to the orbital plane of its companion star. We analytically model the system with a steady state disc warped by Lense-Thirring precession and find the timescale for the alignment of the black hole with the binary orbit. We make detailed stellar evolution models so as to estimate the accretion rate and the lifetime of the system in this state. The secondary can be evolving at the end of the main sequence or across the Hertzsprung gap. The mass-transfer rate is typically fifty times higher in the latter case but we find that, in both cases, the lifetime of the mass transfer state is at most a few times the alignment timescale. The fact that the black hole has not yet aligned with the orbital plane is therefore consistent with either model. We conclude that the system may or may not have been counter-aligned after its supernova kick but that it is most likely to be close to alignment rather than counteralignment now.Comment: Accepted for publication in MNRA

    Photometry of the Globular Cluster NGC 5466: Red Giants and Blue Stragglers

    Full text link
    We present wide-field BVI photometry for about 11,500 stars in the low-metallicity cluster NGC 5466. We have detected the red giant branch bump for the first time, although it is at least 0.2 mag fainter than expected relative to the turnoff. The number of red giants (relative to main sequence turnoff stars) is in excellent agreement with stellar models from the Yonsei-Yale and Teramo groups, and slightly high compared to Victoria-Regina models. This adds to evidence that an abnormally large ratio of red giant to main-sequence stars is not correlated with cluster metallicity. We discuss theoretical predictions from different research groups and find that the inclusion or exclusion of helium diffusion and strong limit Coulomb interactions may be partly responsible. We also examine indicators of dynamical history: the mass function exponent and the blue straggler frequency. NGC 5466 has a very shallow mass function, consistent with large mass loss and recently-discovered tidal tails. The blue straggler sample is significantly more centrally concentrated than the HB or RGB stars. We see no evidence of an upturn in the blue straggler frequency at large distances from the center. Dynamical friction timescales indicate that the stragglers should be more concentrated if the cluster's present density structure has existed for most of its history. NGC 5466 also has an unusually low central density compared to clusters of similar luminosity. In spite of this, the specific frequency of blue stragglers that puts it right on the frequency -- cluster M_V relation observed for other clusters.Comment: 51 pages, 21 figures, 1 electronic table, accepted to Ap

    Planets in binary systems: is the present configuration indicative of the formation process?

    Get PDF
    The present dynamical configuration of planets in binary star systems may not reflect their formation process since the binary orbit may have changed in the past after the planet formation process was completed. An observed binary system may have been part of a former hierarchical triple that became unstable after the planets completed their growth around the primary star. Alternatively, in a dense stellar environment even a single stellar encounter between the star pair and a singleton may singificantly alter the binary orbit. In both cases the planets we observe at present would have formed when the dynamical environment was different from the presently observed one. We have numerically integrated the trajectories of the stars (binary plus singleton) and of test planets to investigate the abovementioned mechanisms. Our simulations show that the circumstellar environment during planetary formation around the primary was gravitationally less perturbed when the binary was part of a hierarchical triple because the binary was necessarely wider and, possibly, less eccentric. This circumstance has consequences for the planetary system in terms of orbital spacing, eccentricity, and mass of the individual planets. Even in the case of a single stellar encounter the present appearance of a planetary system in a binary may significantly differ from what it had while planet formation was ongoing. However, while in the case of instability of a triple the trend is always towards a tighter and more eccentric binary system, when a single stellar encounter affects the system the orbit of the binary can become wider and be circularized.Comment: 5 pages, 5 figures Accepted for publication on A&
    corecore