151 research outputs found
Landslide susceptibility assessment of SE Bartin (West Black Sea region, Turkey) by artificial neural networks
Landslides are significant natural hazards in Turkey, second only to earthquakes with respect to economic losses and casualties. The West Black Sea region of Turkey is known as one of the most landslide-prone regions in the country. The work presented in this paper is aimed at evaluating landslide susceptibility in a selected area in the West Black Sea region using Artificial Neural Network (ANN) method. A total of 317 landslides were identified and mapped in the area by extensive field work and by use of air photo interpretations to build a landslide inventory map. A landslide database was then derived automatically from the landslide inventory map. To evaluate landslide susceptibility, six input parameters (slope angle, slope aspect, topographical elevation, topographical shape, wetness index, and vegetation index) were used. To obtain maps of these parameters, Digital Elevation Model (DEM) and ASTER satellite imagery of the study area were used. At the first stage, all data were normalized in [0, 1] interval, and parameter effects on landslide occurrence were expressed using Statistical Index values (Wi). Then, landslide susceptibility analyses were performed using an ANN. Finally, performance of the resulting map and the applied methodology is discussed relative to performance indicators, such as predicted areal extent of landslides and the strength of relation (<i>r<sub>ij</sub></i>) value. Much of the areal extents of the landslides (87.2%) were classified as susceptible to landsliding, and <i>r<sub>ij</sub></i> value of 0.85 showed a high degree of similarity. In addition to these, at the final stage, an independent validation strategy was followed by dividing the landslide data set into two parts and 82.5% of the validation data set was found to be correctly classified as landslide susceptible areas. According to these results, it is concluded that the map produced by the ANN is reliable and methodology applied in the study produced high performance, and satisfactory results
Landslide susceptibility mapping at VAZ watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms
Landslide susceptibility and hazard assessments are the most important steps in landslide risk mapping. The main objective of this study was to investigate and compare the results of two artificial neural network (ANN) algorithms, i.e., multilayer perceptron (MLP) and radial basic function (RBF) for spatial prediction of landslide susceptibility in Vaz Watershed, Iran. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 136 landside locations were constructed from various sources. Then the landslide inventory map was randomly split into a training dataset 70 % (95 landslide locations) for training the ANN model and the remaining 30 % (41 landslides locations) was used for validation purpose. Nine landslide conditioning factors such as slope, slope aspect, altitude, land use, lithology, distance from rivers, distance from roads, distance from faults, and rainfall were constructed in geographical information system. In this study, both MLP and RBF algorithms were used in artificial neural network model. The results showed that MLP with Broyden–Fletcher–Goldfarb–Shanno learning algorithm is more efficient than RBF in landslide susceptibility mapping for the study area. Finally the landslide susceptibility maps were validated using the validation data (i.e., 30 % landslide location data that was not used during the model construction) using area under the curve (AUC) method. The success rate curve showed that the area under the curve for RBF and MLP was 0.9085 (90.85 %) and 0.9193 (91.93 %) accuracy, respectively. Similarly, the validation result showed that the area under the curve for MLP and RBF models were 0.881 (88.1 %) and 0.8724 (87.24 %), respectively. The results of this study showed that landslide susceptibility mapping in the Vaz Watershed of Iran using the ANN approach is viable and can be used for land use planning
Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya
The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning
Artificial Neural Network (ANN) based model for predicting of overall strength of Volcanic Bimrock
ISRM European Symposium -- MAY 26-29, 2014 -- Vigo, SPAINThe uniaxial compressive strength of rock material (UCS) is one of the fundamental input parameters for engineering applications to be constructed on/in rock masses such as deep slopes, tunnels and dams. However, preparation of the high quality cores for laboratory studies is generally difficult for some types of rock such as laminated and/or fragmented rock material. To overcome this difficulty empirical prediction models were developed by considering some input parameters. Geological mixtures composed of rock blocks surrounded by weak matrix material are known as Block-In-Matrix-Rock (Bimrock) in literature. Agglomerate is a special type of Bimrock, which is composed of andesite fragments surrounded by tuff matrix and it is an example of Volcanic Bimrock. Preparation of core samples for experimental studies from agglomerate is problematic due to the strength contrast between andesite rock fragments and tuff matrix. To overcome these difficulties, some prediction tools have been studied by regression analyses in the literature. In this study, Artificial Neural Network (ANN) as a prediction tool was used to construct a model for prediction of overall UCS of Volcanic Bimrock. While Volumetric Block Proportion (VBP), Volumetric Block Count (VBC) and fractal dimensions (1 and 2 dimensional) were selected as input parameters, normalized overall uniaxal strength of agglomerate to uniaxal compressive strength of tuff matrix is output parameter. Fractal geometry has been used as popular method to define irregular shapes as a quantity in literature. The boundary strength between an-desite fragments and tuff matrix is also sensitive to fragment shape and surface roughness of andesite fragments. Therefore fractal dimensions were selected as input parameters to incorporate this effect on boundary strength. While previously developed computer code FRACRUN was used to determine average fractal dimension of andesite fragments in agglomerate cores, previously developed computer code ANNES was used for ANN based model construction. In addition, similar to Volumetric Joint Count (Jv) which is widely used in rock mass characterization, Volumetric Block Count (VBC) was defined as another input parameter for determination of Bimrock UCS considering some of studies about performed in literature. The highest prediction performance was obtained from the model which considers Volumetric Block Proportion (VBP), Volumetric Block Count (VBC) and 1D fractal dimension as inputs.ISRM,Spanish Soc Rock Mech,Univ Vigo, Sch Min EngnScientific and Technological Research Council of Turkey [108Y002]The database used in this study was established during TUBITAK Project ( The Scientific and Technological Research Council of Turkey, Project No: 108Y002)
Probabilities of developing HIV-1 bNAb sequence features in uninfected and chronically infected individuals
International audienceHIV-1 broadly neutralizing antibodies (bNAbs) are able to suppress viremia and prevent infection. Their induction by vaccination is therefore a major goal. However, in contrast to antibodies that neutralize other pathogens, HIV-1-specific bNAbs frequently carry uncommon molecular characteristics that might prevent their induction. Here, we perform unbiased sequence analyses of B cell receptor repertoires from 57 uninfected and 46 chronically HIV-1- or HCV-infected individuals and learn probabilistic models to predict the likelihood of bNAb development. We formally show that lower probabilities for bNAbs are predictive of higher HIV-1 neutralization activity. Moreover, ranking bNAbs by their probabilities allows to identify highly potent antibodies with superior generation probabilities as preferential targets for vaccination approaches. Importantly, we find equal bNAb probabilities across infected and uninfected individuals. This implies that chronic infection is not a prerequisite for the generation of bNAbs, fostering the hope that HIV-1 vaccines can induce bNAb development in uninfected people
Landslide susceptibility mapping using support vector machine and GIS at the Golestan province, Iran
The main goal of this study is to produce landslide susceptibility map using GIS-based support vector machine (SVM) at Kalaleh Township area of the Golestan province, Iran. In this paper, six different types of kernel classifiers such as linear, polynomial degree of 2, polynomial degree of 3, polynomial degree of 4, radial basis function (RBF) and sigmoid were used for landslide susceptibility mapping. At the first stage of the study, landslide locations were identified by aerial photographs and field surveys, and a total of 82 landslide locations were extracted from various sources. Of this, 75% of the landslides (61 landslide locations) are used as training dataset and the rest was used as (21 landslide locations) the validation dataset. Fourteen input data layers were employed as landslide conditioning factors in the landslide susceptibility modelling. These factors are slope degree, slope aspect, altitude, plan curvature, profile curvature, tangential curvature, surface area ratio (SAR), lithology, land use, distance from faults, distance from rivers, distance from roads, topographic wetness index (TWI) and stream power index (SPI). Using these conditioning factors, landslide susceptibility indices were calculated using support vector machine by employing six types of kernel function classifiers. Subsequently, the results were plotted in ArcGIS and six landslide susceptibility maps were produced. Then, using the success rate and the prediction rate methods, the validation process was performed by comparing the existing landslide data with the six landslide susceptibility maps. The validation results showed that success rates for six types of kernel models varied from 79% to 87%. Similarly, results of prediction rates showed that RBF (85%) and polynomial degree of 3 (83%) models performed slightly better than other types of kernel (polynomial degree of 2 = 78%, sigmoid = 78%, polynomial degree of 4 = 78%, and linear = 77%) models. Based on our results, the differences in the rates (success and prediction) of the six models are not really significant. So, the produced susceptibility maps will be useful for general land-use planning
- …
