712 research outputs found
The temporal dynamic of response inhibition in early childhood: An ERP study of partial and successful inhibition
Event-related potentials were recorded while five-year-old children completed a Go/No-Go task that distinguished between partial inhibition (i.e., response is initiated but cancelled before completion) and successful inhibition (i.e., response is inhibited before it is initiated). Partial inhibition trials were characterized by faster response initiation and later latency of the lateral frontal negativity (LFN) than successful Go and successful inhibition trials. The speed of response initiation was influenced by the response speed on previous trials and influenced the response speed on subsequent trials. Response initiation and action decision dynamically influenced each other, and their temporal interplay determined response inhibition success
Дослідження проблеми здимання гірських порід із застосуванням апарату теорії стійкості механічних систем: постановка задачі
Описаны возможные направления развития исследований явлений, сопровождающихся большими пластическими деформациями (исследование геодинамических явлений, явлений потери устойчивости почвы выработки (пучения) и т.п.).Possible directions of development of researches of the effects, attended with large plastic strains are described (research of the geodynamics effects, effects of losses of roadway floor sustainability (rock heaving) etc.)
The effect of energetic electron precipitation on middle mesospheric night-time ozone during and after a moderate geomagnetic storm
Using a ground-based microwave radiometer at Troll Station, Antarctica (72°S, 2.5°E, L = 4.76), we have observed a decrease of 20–70% in the mesospheric ozone, coincident with increased nitric oxide, between 60 km and 75 km altitude associated with energetic electron precipitation (E > 30 keV) during a moderate geomagnetic storm (minimum Dst of −79 nT) in late July 2009. NOAA satellite data were used to identify the precipitating particles and to characterize their energy, spatial distribution and temporal variation over Antarctica during this isolated storm. Both the ozone decrease and nitric oxide increase initiate with the onset of the storm, and persist for several days after the precipitation ends, descending in the downward flow of the polar vortex. These combined data present a unique case study of the temporal and spatial morphology of chemical changes induced by electron precipitation during moderate geomagnetic storms, indicating that these commonplace events can cause significant effects on the middle mesospheric ozone distribution
Application of Resonance Perturbation Theory to Dynamics of Magnetization in Spin Systems Interacting with Local and Collective Bosonic Reservoirs
We apply our recently developed resonance perturbation theory to describe the
dynamics of magnetization in paramagnetic spin systems interacting
simultaneously with local and collective bosonic environments. We derive
explicit expressions for the evolution of the reduced density matrix elements.
This allows us to calculate explicitly the dynamics of the macroscopic
magnetization, including characteristic relaxation and dephasing time-scales.
We demonstrate that collective effects (i) do not influence the character of
the relaxation processes but merely renormalize the relaxation times, and (ii)
significantly modify the dephasing times, leading in some cases to a
complicated (time inhomogeneous) dynamics of the transverse magnetization,
governed by an effective time-dependent magnetic field
Atmospheric effects of radiation belt precipitation over Antarctica
第3回極域科学シンポジウム 横断セッション「中層大気・熱圏」 11月26日(月) 国立極地研究所 2階大会議
Elastic Scattering of Pions From the Three-nucleon System
We examine the scattering of charged pions from the trinucleon system at a
pion energy of 180 MeV. The motivation for this study is the structure seen in
the experimental angular distribution of back-angle scattering for pi+ 3He and
pi- 3H but for neither pi- 3He nor pi+ 3H. We consider the addition of a double
spin flip term to an optical model treatment and find that, though the
contribution of this term is non-negligible at large angles for pi+ 3He and pi-
3H, it does not reproduce the structure seen in the experiment.Comment: 15 pages + 5 figure
Measurement of the 3He mass diffusion coefficient in superfluid 4He over the 0.45-0.95 K temperature range
We have measured the mass diffusion coefficient D of 3He in superfluid 4He at
temperatures lower than were previously possible. The experimental technique
utilizes scintillation light produced when neutron react with 3He nuclei, and
allows measurement of the 3He density integrated along the trajectory of a
well-defined neutron beam. By measuring the change in 3He density near a heater
as a function of applied heat current, we are able to infer values of D with
20% accuracy. At temperatures below 0.7 K and for concentrations of order
10^{-4} we find D=(2.0+2.4-1.2)T^-(6.5 -/+ 1.2) cm^2/s, in agreement with a
theoretical approximation.Comment: 8 pages, 5 figures. Submitted to Europhysics Letters and prepared in
that journal's forma
Comment on ``Measurement of the He mass diffusion coefficient in superfluid He over the 0.45--0.95 K temperature range
The role of 3He-3He collisions in our diffusion experiment is addressed and
shown to not be relevant to the measurement of 3He diffusion against phonons in
superfluid helium.Comment: Two pages, in Europhysics Letters forma
Microtesla MRI of the human brain combined with MEG
One of the challenges in functional brain imaging is integration of
complementary imaging modalities, such as magnetoencephalography (MEG) and
functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive
superconducting quantum interference devices (SQUIDs) to directly measure
magnetic fields of neuronal currents, cannot be combined with conventional
high-field MRI in a single instrument. Indirect matching of MEG and MRI data
leads to significant co-registration errors. A recently proposed imaging method
- SQUID-based microtesla MRI - can be naturally combined with MEG in the same
system to directly provide structural maps for MEG-localized sources. It
enables easy and accurate integration of MEG and MRI/fMRI, because microtesla
MR images can be precisely matched to structural images provided by high-field
MRI and other techniques. Here we report the first images of the human brain by
microtesla MRI, together with auditory MEG (functional) data, recorded using
the same seven-channel SQUID system during the same imaging session. The images
were acquired at 46 microtesla measurement field with pre-polarization at 30
mT. We also estimated transverse relaxation times for different tissues at
microtesla fields. Our results demonstrate feasibility and potential of human
brain imaging by microtesla MRI. They also show that two new types of imaging
equipment - low-cost systems for anatomical MRI of the human brain at
microtesla fields, and more advanced instruments for combined functional (MEG)
and structural (microtesla MRI) brain imaging - are practical.Comment: 8 pages, 5 figures - accepted by JM
TNF-α/TNFR1 Signaling Is Required for the Development and Function of Primary Nociceptors
SummaryPrimary nociceptors relay painful touch information from the periphery to the spinal cord. Although it is established that signals generated by receptor tyrosine kinases TrkA and Ret coordinate the development of distinct nociceptive circuits, mechanisms modulating TrkA or Ret pathways in developing nociceptors are unknown. We have identified tumor necrosis factor (TNF) receptor 1 (TNFR1) as a critical modifier of TrkA and Ret signaling in peptidergic and nonpeptidergic nociceptors. Specifically, TrkA+ peptidergic nociceptors require TNF-α-TNFR1 forward signaling to suppress nerve growth factor (NGF)-mediated neurite growth, survival, excitability, and differentiation. Conversely, TNFR1-TNF-α reverse signaling augments the neurite growth and excitability of Ret+ nonpeptidergic nociceptors. The developmental and functional nociceptive defects associated with loss of TNFR1 signaling manifest behaviorally as lower pain thresholds caused by increased sensitivity to NGF. Thus, TNFR1 exerts a dual role in nociceptor information processing by suppressing TrkA and enhancing Ret signaling in peptidergic and nonpeptidergic nociceptors, respectively
- …
