1,087 research outputs found

    Relative contribution of multiple stressors on copepod density and diversity dynamics in the Belgian part of the North Sea

    Get PDF
    The effect of multiple stressors on marine ecosystems is poorly understood. To partially bridge this knowledge gap we investigated the relative contribution of environmental variables to density and diversity dynamics of the zooplankton community in the Belgian part of the North Sea. We applied multimodel inference on generalized additive models to quantify the relative contribution of chlorophyll a, temperature, nutrients, salinity and anthropogenic chemicals (i.e. polychlorinated biphenyls and polycyclic aromatic hydrocarbons) to the dynamics of calanoid copepod species in the Belgian part of the North Sea. Temperature was the only predictor consistently showing a high importance in all models predicting the abundances of the selected copepod species. The relative contribution of other predictors was species-dependent. Anthropogenic chemicals were important predictors for three out of six species indicating that chemical mixtures at low concentrations should not be left unattended when performing risk assessments in a natural environment

    Sex-biased mortality of common terns in wind farm collisions

    Get PDF
    We studied sex differences in collision mortality in adult Common Terns (Sterna hirundo) at a wind farm in the direct vicinity of a breeding site in Zeebrugge, Belgium in 2005-2007. In total, 64 fatalities were collected and sexed, of which 64% were males. Uneven sex ratio among these birds was most pronounced during the period of incubation and early chick feeding (15 May-15 June), when 78% of the 28mortalities were male. During prelaying and feeding of young, the sex ratio of mortalities did not differ from equality. We argue that sex-biased collision mortality in Common Terns does not result from morphological differences between the sexes, but rather reflects differences in foraging frequency between males and females during egg-laying and incubation

    Multimodel inference to quantify the relative importance of abiotic factors in the population dynamics of marine zooplankton

    Get PDF
    The effect of multiple stressors on marine ecosystems remains poorly understood and most of the knowledge available is related to phytoplankton. To partly address this knowledge gap, we tested if combining multimodel inference with generalized additive modelling could quantify the relative contribution of environmental variables on the population dynamics of a zooplankton species in the Belgian part of the North Sea. Hence, we have quantified the relative contribution of oceanographic variables (e.g. water temperature, salinity, nutrient concentrations, and chlorophyll a concentrations) and anthropogenic chemicals (i.e. polychlorinated biphenyls) to the density of Acartia clausi. We found that models with water temperature and chlorophyll a concentration explained ca. 73% of the population density of the marine copepod. Multimodel inference in combination with regression-based models are a generic way to disentangle and quantify multiple stressor-induced changes in marine ecosystems. Future–oriented simulations of copepod densities suggested increased copepod densities under predicted environmental changes

    Gas exchange during storage and incubation of Avian eggs: Effects on embryogenesis, hatchability, chick quality and post-hatch growth

    Full text link
    Embryonic development is a dynamic process that requires a fine balance between several factors in order to achieve an optimum hatchability and chick quality. These factors include the background of the embryo, such as genetic line of the breeders, the age of the breeder, egg weight, and factors related to the environment in which the egg is stored and incubated, such as temperature, humidity, gas levels and altitude. Gas exchanges are of fundamental importance for embryonic development during incubation and may affect the livability of the embryo. This paper reviews the roles of the gaseous environment (i.e. O 2 and CO2) around hatching eggs during storage and during incubation and the effect it might have on the survival of the developing embryos and the chicks that hatch. The state of the art on the different attempts to establish the optimum requirements of different gases that promote the optimal developmental trajectories at different periods during incubation is presented. The roles and consequences of different levels of O2 and CO2 during storage and incubation on hatchability, incubation duration, hatching process, embryo growth, embryo mortality, organ development and morphology, metabolism, blood acid-base balance, chick quality and chick post-hatch growth are reviewed. © 2007 World's Poultry Science Association

    The application of predictive modelling for determining bio-environmental factors affecting the distribution of blackflies (Diptera: Simuliidae) in the Gilgel Gibe watershed in Southwest Ethiopia

    Get PDF
    Blackflies are important macroinvertebrate groups from a public health as well as ecological point of view. Determining the biological and environmental factors favouring or inhibiting the existence of blackflies could facilitate biomonitoring of rivers as well as control of disease vectors. The combined use of different predictive modelling techniques is known to improve identification of presence/absence and abundance of taxa in a given habitat. This approach enables better identification of the suitable habitat conditions or environmental constraints of a given taxon. Simuliidae larvae are important biological indicators as they are abundant in tropical aquatic ecosystems. Some of the blackfly groups are also important disease vectors in poor tropical countries. Our investigations aim to establish a combination of models able to identify the environmental factors and macroinvertebrate organisms that are favourable or inhibiting blackfly larvae existence in aquatic ecosystems. The models developed using macroinvertebrate predictors showed better performance than those based on environmental predictors. The identified environmental and macroinvertebrate parameters can be used to determine the distribution of blackflies, which in turn can help control river blindness in endemic tropical places. Through a combination of modelling techniques, a reliable method has been developed that explains environmental and biological relationships with the target organism, and, thus, can serve as a decision support tool for ecological management strategies

    Influence of batch or fed-batch growth on Staphylococcus epidermidis biofilm formation

    Get PDF
    Aims: To make a quantitative evaluation of the differences in biofilm formation by Staphylococcus epidermidis using batch and fed-batch growth systems and to correlate this with production of the major biofilm polysaccharide, poly-N-acetyl glucosamine (PNAG). Methods and Results: Dry weight measurements of biofilms formed in batch and fed-batch conditions were compared with haemagglutination titres, which measure the amount of PNAG produced. Strains grown in batch systems developed less biofilm than when grown in fed-batch systems. A good correlation was found between the amount of biofilm formed in fed-batch systems and the haemagglutination titres. Conclusions: Differences in biofilm formation and PNAG production by S. epidermidis are dependent on the availability of nutrients, with higher availability correlating with more biofilm and PNAG production. Significance of and Impact of the Study: Comparisons of the formation of biofilms by S. epidermidis are dependent on choosing an appropriate biofilm growth system. Comparability or disparity of conclusions among different investigations will be strongly influenced by which mode S. epidermidis biofilms are formed.NIH - grant AI 46706.Fundação para a Ciência e a Tecnologia (FCT) – Programa Operacional “Ciência, Tecnologia, Inovação” (POCTI) - POCTI/ESP/42688/2001, SFRH/BD/8676/2002
    corecore